广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (05): 125-128.doi: 10.12052/gdutxb.240013
• 微分方程及其应用 • 上一篇
徐麟, 谢启林
Xu Lin, Xie Qi-lin
摘要: 由于Kirchhoff方程在众多物理问题中有着十分重要的应用,其规范解问题在近年来逐渐引起大批学者的研究兴趣。这些研究集中于探讨方程规范解的存在性问题,即在特定质量约束条件下,是否能找到满足方程的解。文章研究了一类带组合非线性项Kirchhoff方程规范解的存在性问题。通过利用变分法中的极小化方法,集中紧性原理和消失引理,证明了在扩散情形下对任意质量约束,方程存在一个规范解。对比已有的结果,文章的结论是对已有相关结果的推广。
中图分类号:
[1] LIONS J L. On some questions in boundary value problems of mathematical physics [J]. North Holland Mathematics Studies, 1978, 30: 284-346. [2] ALVES C O, COTTRA F, MA T F. Positive solutions for a quasilinear elliptic equation of kirchhoff type [J]. Computers Mathematics with Applications, 2005, 49(1): 85-93. [3] LEI C Y, LIAO J F, TANG C L. Multiple positive solutions for kirchhoff type of problems with singularity and critical exponents [J]. Journal of Mathematical Analysis and Applications, 2015, 421(1): 521-538. [4] SOAVE N. Normalized ground states for the NLS equation with combined nonlinearities[J]. Journal of Differential Equations. 2020, 269(9) : 6941-6987. [5] SOAVE N. Normalized ground states for the NLS equation with combined nonlinearities: the sobolev critical case [J]. Journal of Functional Analysis, 2020, 279(6): 1086-1101. [6] LI G B, LUO X, YANG T. Normalized solutions to a class of kirchhoff equations with sobolev critical exponent [J]. Annales Fennici Mathematici, 2022, 47: 895-925. [7] HU J Q, MAO A M. Normalized solutions to the kirchhoff equation with a perturbation term [J]. Differential and Integral Equations, 2023, 36(3/4): 289-312. [8] CARRIAO P C, MIYAGAKI O H, VICENTE A. Normalized solutions of kirchhoff equations with critical and subcritical nonlinearities: the defocusing case [J]. Partial Differential Equations and Applications, 2022, 3(5): 64. [9] BERNARD D. Introduction to the calculus of variations[M]. Switzerland :World Scientific Publishing Company , 2014. [10] WILLEM M. Minimax theorems[M]. Boston: Springer Science Business Media, 1997. [11] WEINSTEIN M I. Nonlinear schrödinger equations and sharp interpolation estimates [J]. Communications in Mathematical Physics, 1982, 87: 567-576. [12] STUART C A. Bifurcation from the continuous spectrum in the L2 theory of elliptic equations on RN[J]. Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli, 1981, 231-300. [13] LIONS P L. The concentration-compactness principle in the calculus of variations, the locally compact case, part 1 [J]. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 1984, 1(2): 109-145. |
[1] | 洪育敏, 杨理平. 具有Banach代数的锥度量空间中的公共不动点定理[J]. 广东工业大学学报, 2021, 38(01): 75-81. |
[2] | 刘艳艳, 杨理平. 锥度量空间中c-距离的公共不动点定理[J]. 广东工业大学学报, 2019, 36(05): 43-47. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|