广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (05): 22-29.doi: 10.12052/gdutxb.240074
罗坚强1, 黎浩贤2, 杨苓1
Luo Jian-qiang1, Li Hao-xian2, Yang Ling1
摘要: 随着国家能源结构的转型以及实施“双碳”战略,大规模风电持续接入电力系统,对系统带来了交互谐振以及变流器驱动稳定性等问题。通过研究双馈异步风机机侧变流器以及网侧变流器控制外环的控制参数对稳定性的影响,发现机侧变流器控制外环的参数稳定区均位于左下平面,网侧变流器外环控制参数稳定区位于右下平面,参数稳定区与不稳定区之间存在着带状的参数风险区。当增大网侧变流器控制器的比例系数与积分系数时,系统阻尼将增强,但在某个区间会产生强烈的交互作用进而发生内部谐振,导致系统失去稳定。针对网侧变流器控制器之间的强烈交互作用,引入粒子群算法对网侧变流器的PI控制器进行参数优化,优化后直流电压恢复速度缩短半个周期,超调量减少40%。
中图分类号:
[1] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-474. XIE X R, HE J B, MAO H Y, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-474. [2] 高本锋, 刘晋, 李忍, 等. 风电机组的次同步控制相互作用研究综述[J]. 电工技术学报, 2015, 30(16): 154-161. GAO B F, LIU J, LI R, et al. Studies of sub-synchronous control interaction in wind turbine generators[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 154-161. [3] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060. WANG W S, ZHANG C, HE G Q, et al. Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060. [4] 陈晨, 杜文娟, 王海风. 风电场接入引发电力系统次同步振荡机理综述[J]. 南方电网技术, 2018, 12(1): 84-93. CHEN C, DU W J, WANG H F. Review on mechanism of sub-synchronous oscillations caused by grid-connected wind farms in power systems[J]. Southern Power System Technology, 2018, 12(1): 84-93. [5] VARMA R K, MOHARANA A. SSR in Double-cage induction generator-based wind farm connected to series-compensated transmission line[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2573-2583. [6] 王亮, 谢小荣, 姜齐荣, 等. 大规模双馈风电场次同步谐振的分析与抑制[J]. 电力系统自动化, 2014, 38(22): 26-31. WANG L, XIE X R, JIANG Q R, et al. Analysis and mitigation of SSR problems in large-scale wind farms with doubly-fed wind turbines[J]. Automation of Electric Power Systems, 2014, 38(22): 26-31. [7] 吕敬, 蔡旭, 张占奎, 等. 海上风电场经MMC-HVDC并网的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2016, 36(14): 3771-3780. LYU J, CAI X, ZHANG Z K, et al. Impedance modeling and stability analysis of MMC-based HVDC for offshore wind farms[J]. Proceedings of the CSEE, 2016, 36(14): 3771-3780. [8] 栗然, 卢云, 刘会兰, 等. 双馈风电场经串补并网引起次同步振荡机理分析[J]. 电网技术, 2013, 37(11): 3073-3079. LI R, LU Y, LIU H L, et al. Mechanism analysis on subsynchronous oscillation caused by grid-integration of doubly fed wind power generation system via series compensation[J]. Power System Technology, 2013, 37(11): 3073-3079. [9] WANG L, XIE X, JIANG Q, et al. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2772-2779. [10] 胡应宏, 邓春, 谢小荣, 等. 双馈风机–串补输电系统次同步谐振的附加阻尼控制[J]. 电网技术, 2016, 40(4): 1169-1173. HU Y H, DENG C, XIE X R, et al. Additional damping control of DFIG series compensated transmission system under sub-synchronous resonance[J]. Power System Technology, 2016, 40(4): 1169-1173. [11] OSTADI A, YAZDANI A, VARMA R K. Modeling and stability analysis of a DFIG-based wind-power generator interfaced with a series-compensated line[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1504-1514. [12] IRWIN G D, JINDAL A K, ISAACS A L. Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission systems[C]//2011 IEEE Power and Energy Society General Meeting. Detroit, MI: IEEE, 2011: 1-6. [13] DU W, CHEN C, WANG H. Subsynchronous interactions induced by DFIGs in power systems without series compensated lines[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1275-1284. [14] DU W, FU Q, WANG H, et al. Concept of modal repulsion for examining the subsynchronous oscillations caused by wind farms in power systems[J]. IEEE Transactions on Power Systems, 2019, 34(1): 518-526. [15] 熊浩清, 何鹏飞, 孙冉, 等. 双馈风电场无串补并网振荡场景及关键影响因素研究[J]. 高电压技术, 2024, 50(2): 660-672. XIONG H Q, HE P F, SUN R, et al. Oscillation scenarios of grid integrated wind farm with DFIGs without series compensation and effects of key factors[J]. High Voltage Engineering, 2024, 50(2): 660-672. [16] LUO J, TONG N, BU S, et al. Internal modal resonance analysis for full converter-based wind generation using analytical inertia model[J]. IEEE Transactions on Power Systems, 2024, 39(2): 3509-3522. [17] LUO J, BU S, ZHU J, et al. Modal shift evaluation and optimization for resonance mechanism investigation and mitigation of power systems integrated with FCWG[J]. IEEE Transactions on Power Systems, 2020, 35(5): 4046-4055. [18] LUO J, TENG F, BU S, et al. Converter-driven stability constrained unit commitment considering dynamic interactions of wind generation[J]. International Journal of Electrical Power & Energy Systems, 2023, 144: 108614 [19] LUO J, BU S, TENG F. An optimal modal coordination strategy based on modal superposition theory to mitigate low frequency oscillation in FCWG penetrated power systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 120: 105975 [20] LUO J, BU S, ZHU J. A novel PMU-based adaptive coordination strategy to mitigate modal resonance between full converter-based wind generation and grids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(6): 7173-7182. [21] LUO J, BU S, CHUNG C Y. Design and comparison of auxiliary resonance controllers for mitigating modal resonance of power systems integrated with wind generation[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3372-3383 |
[1] | 杨钟瑾; . 自顶向下优化神经网络的方法[J]. 广东工业大学学报, 2006, 23(3): 95-101. |
[2] | 李冬梅; 金同轨; . 直接过滤技术中混凝剂的最佳选择[J]. 广东工业大学学报, 2002, 19(2): 48-54. |
|