广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (2): 28-32.doi: 10.3969/j.issn.1007-7162.2012.02.005

• 综合研究 • 上一篇    下一篇

微波辐射Fenton氧化处理络合铜废水研究

  

  1. 广东工业大学 环境科学与工程学院,广东 广州 510006
  • 出版日期:2012-06-25 发布日期:2012-06-25
  • 作者简介:林亲铁(1972-),男,副教授,博士,主要研究方向为水污染控制.
  • 基金资助:

    国家“十一五”水体污染控制与治理科技重大专项东江项目(2009ZX07211-005-03);广东省教育部产学研项目(2011B090400255, 2010B090400418);环保部公益性行业科研专项资助项目(201109024)

Treatment of Chelated Copper Wastewater by Microwave-Assisted -Fenton Oxidation Process

  1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006,China
  • Online:2012-06-25 Published:2012-06-25

摘要: 以络合铜生产废水为研究对象,考察了H2O2投加量、FeSO4投加量、pH值、微波辐射时间、微波辐射功率等因素对微波辐射Fenton氧化法去除污染物效果的影响.分析了最优条件下单独微波、单独Fenton以及两者联用对CODCr和Cu2+的去除作用,初步探索了各影响因子的作用效果和综合反应机理.结果表明,通过单因素实验优化微波辐射Fenton氧化处理络合铜生产废水的最佳工艺条件为:30%H2o2用量为130 mL/L、FeSO4·7H2O用量为5 g/L、pH值为35、微波功率680 W、微波辐射时间10 min.在此条件下,微波结合Fenton氧化使CODCr和Cu2+分别由14 750mg/L、968 mg/L下降到1 327 mg/L、55 mg/L,单独微波下降到11 563 mg/L、681 mg/L,单独Fenton氧化下降到2 537 mg/L、99 mg/L.

关键词: 微波;芬顿;络合铜

Abstract: The effects of H2O2 mass concentration, Fe2+ mass concentration, pH value, microwave power and irradiation duration on pollutant removal were investigated during microwaveassisted Fenton oxidation. Chelated copper wastewater was treated by single microwave, single Fenton oxidation and microwaveassisted Fenton oxidation under the most favorable conditions. The mechanisms of microwaveenhanced Fenton oxidation were analyzed. The optimal operating conditions during microwaveFenton process are as follows: microwave power=680 W, irradiation time=10 min, dosage of Fenton was H2O2(30%)=130 mL/L, FeSO4·7H2O=5 g/L. Under these conditions, COD Cr  decreases from 14 750 mg/L to 1 327 mg/L, and Cu2+ decreases from 968 mg/L to 55 mg/L. Compared with those by means of the microwaveoxidation process, the removal rate of  COD Cr and Cu(II) decreased evidently both in single microwave and single Fenton oxidation.

Key words: microwave; Fenton; chelated copper

[1] Baig M K, Mahon N, McKenna W J, et al. The pathophysiology of advanced heart failure[J]. Heart & Lung,1999,28(2):87-101.

[2] 周艳丽. 扩张型心肌病心肌与血管损伤和修复的机制[D].南京:南京医科大学第一附属医院, 2008.

[3] Orlic D, Kajstura J, Chimenti S, et al. Bone marow cells regenerate infarcted myocardium[J]. Nature, 2001,410(6829):701-705.

[4] Menasché P, Hagège A A, Scorsin M, et al. Myoblast Transplantation for heart failure[J]. Lancet, 2001,357(9252):279-280.

[5] Assmus B, Schchinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI)[J]. Circulation,2002,106(24):3009-3017.

[6] Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis[J]. Journal of molecular and cellular cardiology, 2007, 42(1):88-97.

[7] 中国生物医学工程学会. 人工器官[EB/OL].[2012-02-03]. http:∥amuseum.cdstm.cn/AMuseum/organs/heart/xzbp/index.html.

[8] Kelley S T, Malekan R, Gorman Ⅲ J H,et al. Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction[J]. Circulation, 1999, 99(1):135-142.

[9] Enomoto Y, Gorman III J H, Moainie S L, et al. Early ventricular restraint after myocardial infarction: Extent of the wrap determines the outcome of remodeling[J]. The Annals of Thoracic Surgery, 2005, 79(3):881-887.

[10] Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardical tissue engineering[J]. Pharmacology & Therapeutics, 2005, 105(2):151-163.

[11] Wei H J, Chen C H, Lee W Y, et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair[J]. Biomaterials, 2008, 29(26):3547-3556.

[12] Chen Q Z, Harding S E, Ali N N, et al. Biomaterials in cardiac tissue engineering: Ten years of research survey[J].Materials Science and Engineering R, 2008,59(1-6):1-37.[13] Cwajg J M, Cwajg E, Nagueh S F, et al. Enddiastolic wall thickness as a predictor of recovery of function in myocardial hibernation: Relation to restredistribution Tl-201 tomography and dobutamine stress echocardiography[J]. Journal of the American College of Cardiology, 2000, 35(5):1152-1161.

[14] Fujimoto K L, Tobita K, Merryman W D, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction[J]. Journal of the American College of Cardiology,2007,49(23):2292-2300.

[15] Christman K L, Vardanian A J, Fang Q Z, et al. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium[J]. Journal of the American College of Cardiology, 2004, 44(3):654-660.

[16] Christman K L, Fok H H, Sievers R E, et al. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction[J]. Tissue Engineering, 2004, 10(3-4):403-409.

[17] Wall S T, Walker J C, Healy K E, et al. Theoretical impact of the injection of material into the myocardium a finite element model simulation[J]. Circulation, 2006, 114(24):26272635.

[18] McDevitt T C, Woodhouse K A, Hauschka S D, et al. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair[J]. Journal of Biomedical Materials Research Part A,2003,66A(3):586-595.

[19] Alperin C, Zandstra P W, Woodhouse K A. Polyurethane films seeded with embryonic stem cellderived cardiomyocytes for use in cardiac tissue engineering applications[J]. Biomaterials, 2005, 26(35):7377-7386.

[20] Fujimoto K L, Guan J, Oshima H, et al. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures[J]. The Annals of Thoracic Surgery 2007, 83(2):648-654.

[21] Gao J, Crapo P M, Wang Y. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering[J]. Tissue Engineering, 2006, 12(4):917-925.

[22] Chen Q Z, Bismarck A, Hansen U, et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue[J]. Biomaterials, 2008, 29(1):47-57.

[23] Hata H, Br A, Dorfman S, et al. Engineering a novel threedimensional contractile myocardial patch with cell sheets and decellularised matrix[J]. European Journal of Cardiothoracic Surgery, 2010, 38(4):450-455.

[24] Prabhakaran M P, Kai D, GhasemiMobarakeh L, et al. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering[J]. Biomedical Materials, 2011, 6(5):055001-055012.

[25] Venugopal J R, Prabhakaran M P, Mukherjee S, et al. Biomaterial strategies for alleviation of myocardial infarction[J]. Journal of the Royal Society Interface, 2012, 9(66):1-19.[26] 冯元桢. 生物力学—活组织的力学特性[M]. 长沙: 湖南科技出版社, 1986.

[27] Hunter P J, McCulloch A D, Keurs H J. Modelling the mechanical properties of cardiac muscle[J]. Progress in Biophysics and Molecular Biology, 1998, 69(23):289-331.

[28] Coirault C, Samuel J L, Chemla D, et al. Increased compliance in diaphragm muscle of the cardiomyopathic Syrian hamster[J]. Journal of Applied Physiology, 1998, 85(5):1762-1769.

[29] Weis S M, Emery J L, Becker K D, et al. Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim) [J]. Circulation Research, 2000,87(8):663-669.

[30] Nagueh S F, Shah G, Wu Y, et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy[J]. Circulation,2004,110(2):155-162.

[31] 章湘明. 心脏起搏器螺旋电极与心肌的交互作用和界面安全[D]. 北京: 清华大学航天航空学院,2007.

[32] 方红荣. 心肌本构模型和数值心脏的力学研究[D]. 北京: 清华大学航天航空学院, 2007.

[33] Burkhoff D. Mechanical properties of the heart and its interaction with the vascular system[EB/OL]. [2012-02-03].http:∥www.columbia.edu/itc/hs/medical/heartsim/review.pdf.

[34] Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressurevolume analysis: a guide for clinical, translational, and basic researchers[J]. The American Journal of Physiology  Heart and Circulatory Physiology,2005,289(2):H501-H512.

[35] McCulloch A D. Cardiac Biomechanics[C] ∥ Bronzino J D. Biomedical Engineering Fundamentals. CRC Press, 2006, 541,54-27.

[36] Yang C, Tang D, Haber I, et al. In vivo MRIbased 3D FSI RV/LV models for human right ventricle and patch design for potential computeraided surgery optimization[J]. Computers and Structures,2007, 85(1114):988-997.

[37] Tang D, Yang C, Geva T, et al. Patientspecific MRIbased 3D FSI RV/LV/patch models for pulmonary valve replacement surgery and patch optimization[J]. Journal of Biomechanical Engineering, 2008,130(4):041010.1-041010.10.

[38]  刘锋. 吕维雪. 有限元方法在心脏力学研究中的应用[J]. 国外医学:生物医学工程分册, 1999, 22(3):137-144.

               Liu Feng, Lu Weixue. Application of the finite element method in the study of cardiac mechanics[J]. Foreign Medical Sciences :Biomedical Engneering Fascicle, 1999, 22(3):137-144.

[39] 张力峰, 刘锋, 吕维雪. 虚拟心脏的研究与应用[J]. 中国医疗器械杂志, 2000, 24(2):93-96.

              Zhang Lifeng, Liu Feng, Lu Weixue. Virtual heart studies and its applications[J]. Chinese Journal of Medical Instrumentation, 2000, 24(2):9396.

[40] Liu F, Lu W X, Xia L, et al. The construction of threedimensional composite finite element mechanical model of human left ventricle[J]. JSME International Journal Series C, 2001,44(1):125-133.

[41] 吴国华, 刘锋, 夏灵, 等. 人体左心室复合材料有限元机械模型的建立[J]. 中国生物医学工程学报, 2002, 21(5):404-410.

             Wu Guo-hua, Liu Feng, Xia Ling, et al. Construction of three dimensional composite finite element mechanical model of human left ventricle[J]. Chinese Journal of Biomedical Engineering,2002,21(5):404-410.

[42] Nash M. Mechanics and material properties of the heart using an anatomically accurate mathematical model[D]. New Zealand: School of Engineering, the University of Auckland,1998.

[43] 詹长安, 冯焕清, 陈强. 基于实测数据的空间堆叠法心室实体造型[J]. 中国科学技术大学学报, 2002, 32(1):104-110.

             Zhan Changan, Feng Huanqing, Chen Qiang. A solid model of human ventricles based on real measured data and spatial pile enumeration[J]. Journal of University of Science and Technology of China,2002,32(1):104-110.

[44] 邱鹏, 李桥, 刘兵, 等. 基于虚拟人数据的心脏表面模型三维重建及显示[J]. 生物医学工程研究, 2005, 24(3):150-152.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!