广东工业大学学报 ›› 2015, Vol. 32 ›› Issue (2): 64-68.doi: 10.3969/j.issn.1007-7162.2015.02.012
周玉光,曾碧,叶林锋
Zhou Yu-guang, Zeng Bi, Ye Lin-feng
摘要: 针对粒子群优化算法搜索精度不高、整体上容易陷入局部最小的不足,提出了一种改进的粒子群优化算法.该算法一方面在速度更新式中用粒子群中粒子个体极值的加权值替代粒子的个体极值,另外通过使用两种非线性递减函数对惯性权重进行调整,这种改进有效地提高了粒子群优化算法的收敛速度和全局寻优能力.然后,通过对4个基准函数的仿真,验证了本文改进算法的全局收敛寻优能力.最后,将本文改进算法应用于珠三角地区某市4G网络基站选址优化中.仿真和应用的结果表明,改进后的粒子群优化算法具有更高的收敛速度和全局寻优能力.
No related articles found! |
|