广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (1): 45-49.

• 综合研究 • 上一篇    下一篇

反哈密顿矩阵的特征值反问题

  

  1. 广东工业大学 应用数学学院,广东 广州 510006
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:莫荣华(1981-),男,讲师,博士,主要研究方向为数值代数.
  • 基金资助:

    国家自然科学基金资助项目(10671077,10971075);广东省自然科学基金资助项目(06025061,9151063101000021);广东工业大学校级博士启动基金资助项目

The Inverse Eigenvalue Problem of the Anti-Hamiltonian Matrices

  1. Faculty of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China
  • Online:2011-12-25 Published:2011-12-25

摘要: 探讨了反哈密顿矩阵的特征值反问题,得到了该问题有解的充要条件、通解的表达式以及最小范数解.证明了其最佳逼近解的存在性和唯一性,建立了其最佳逼近解,并给出了求最佳逼近解的数值算法和算例.
特征值反问题;反哈密顿矩阵;奇异值分解;最佳逼近解

Abstract: It mainly discusses the inverse eigenvalue problem of the antiHamiltonian matrices.The necessary and sufficient solvability conditions for the problem are given.And the general form of solutions is presented.Furthermore,the optimal approximate solution to any given matrix is studied,such a solution is proved to be unique,and the formula to compute it is provided.Some numerical examples are given to demonstrate that the results are right and the algorithm is feasible.

Key words: Inverse eigenvalue problem; Anti-Hamiltonian matrix; Singular value decomposition(SVD); Optimal approximate solution

[1] Horn R A,Johnson C R.Matrix Analysis[M].New York,Cambridge University Press,1985.

[2] Chu M T,Golub G H.Inverse Eigenvalue Problem:Theory,Algorithms and Applications[M].UK:Oxford,Oxford University Press,2005.

[3] Golub G H,Van Loan C F.Matrix Computations,Baltimore[M].The Johns Hopkins University Press,1996.

[4] Boley D,Golub G H.Inverse eigenvalue problems for Band matrices (Proc.Dundee Conf.on Numerical Analysis),Berlin,Springer,1997.

[5] Joseph K T.Inverse eigenvalue problems in structural design[J].AIAA J,1992,30:2890-2896.

[6] Bai Z J.The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skewHamiltonian matrices and its approximation[J].Inerse Problems,2003,19:1185-1194.

[7] 孙继广.实对称矩阵的两类特征值反问题[J].计算数学,1988,3:282-290.

[8] 孟纯军,胡锡炎.哈密顿矩阵的逆特征值问题[J].数学物理学报,2007,3:442-448.

[9] 胡锡炎,张磊,谢冬秀,双对称矩阵逆特征值问题解存在的条件[J].计算数学,1998,3:409-418.

[10] 孙继广.矩阵扰动分析[M].北京,科学出版社,2001.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!