广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (1): 64-66.
摘要: 得到了βi 在线性模型M=(y,X1β1+X2β2,T)下的Bayes线性无偏估计与其在小模型Mi=(y,Xiβi,T)下的Bayes线性无偏估计相等的充分必要条件,i=1,2;并考虑了Xiβi在小模型Mi下的Bayes线性无偏估计之和与Xβ在全模型M下的Bayes线性无偏估计之间的相等关系.
[1] 王松桂, 史建红, 尹素菊, 等. 线性模型引论[M]. 北京: 科学出版社, 2004. [2] 邱红兵, 罗季. 线性模型中F模型的稳健性[J]. 数学学报中文版. 2010, 53(2): 385-392.[3] Trenkler G,Wei L S. The Bayes estimator in a misspecified regression model [J]. Test. 1996(5): 113-123. [4] 张伟平. 贝叶斯线性无偏估计[D].安徽:中国科学技术大学统计与金融系,2005.[5] Wei L S, Zhang W P. The superiorities of Bayes linear minimum risk estimation in linear model [J]. Communications in StatisticsTheory and Methods. 2007, 36: 917-926. [6] 韦来生. 错误先验假定下回归系数Bayes估计的小样本性质[J].应用概率统计. 2000, 6(1): 71-80.[7] 张伟平, 韦来生. 错误先验假设下Bayes线性无偏估计的稳健性[J].应用概率统计,2007,23(1): 59-67.[8] 霍涉云, 张伟平, 韦来生. 一类线性模型参数的Bayes估计及其优良性[J].中国科学技术大学学报.2007, 37(7):773-776.[9] 童楠, 韦来生. 单向分类方差分析模型中参数的Bayes估计及其优良性[J]. 中国科学技术大学学报, 2008,38(9): 10841088.[10] Puntanen S. Some further results related to reduced singular linear model [J]. Communications in StatisticsTheory and Methods,1997,26:375-385.[11] Zhang Baoxue. A study of the equivalence of the BLUEs between a partitioned singular linear model and its reduced singular linear models [J]. Acta Mathematica Sinica, English Series,2004,20(3):557-568.[12] Yongge Tian. On an additive decomposition of the BLUE in a multiplePartitioned linear model [J]. J Multivariate Anal,2009,100:767-776.[13] Yongge Tian, Yoshio Takane. On sum decompositions of weighted leastsquares estimators for the partitioned linear model[J]. Communications in Statistics Theory and Methods,2008,37:55-69. |
No related articles found! |
|