广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (1): 67-68.

• 综合研究 • 上一篇    下一篇

基-可数亚紧空间

  

  1. 肇庆工商学院 工商系,广东 肇庆 526020
  • 出版日期:2012-03-25 发布日期:2012-03-25
  • 作者简介:纪广月(1973-),女,讲师,硕士,主要研究方向为一般拓扑学.
  • 基金资助:

    肇庆工商学院科研基金资助项目(1011GK43)

Base countable Metacompact Space

  1. Dept of Industry and Commerce, Zhaoqing College of Industry and Commerce, Zhaoqing 526020,China
  • Online:2012-03-25 Published:2012-03-25

摘要: 引入了基-可数亚紧空间的概念,通过研究基可数亚紧空间与其子空间之间的关系,得出了基-正规的可数亚紧空间是基-可数亚紧空间,并且在既开又闭的有限到一的映射下,证明了基-可数紧具有保持性.

关键词: 可数亚紧空间;基-可数亚紧空间;相对于X的基-可数亚紧空间;基-正规

Abstract: The notion of base countable metacompact space is introduced through researching the relation between base countable metacompact space and its subspace. From the research, it draws the conclusion that basenormal countable metacompact space is base countable metacompact space, and it proves that open closed finite to 1 map preserves base countable metacompactness.

Key words: countable metacompact space;basecountable metacompact space;basecountable metacompact space relative to X;basenormality

[1] John E.PORTER.Baseparacpmpact spaces[J].Topology and its Applications,2003,128:145-156.

[2] 李克典.Base仿紧空间的一种刻划[J].河南师范大学学报:自然科学版,2004,32(3):106-108.

[3] Engelking R. General Topology [M]. Warszawa: Polish scientific publishers,1977.

[4] 蒲保明.拓扑学[M] .成都:四川大学出版社,1985.

[5] 高国士.拓扑空间论[M].北京:科学出版社,2000.

[6] 蒋继光.一般拓扑学专题选讲[M].成都:四川教育出版社,1991.

[7] 林寿.点可数覆盖与序列覆盖映射[M].北京:科学出版社, 2002.

[8] Yamazaki K. Basenormality and product spaces [J]. Topology and its applications, 2005, 148(13):123-142.

[9] 林寿.广义度量空间与映射[M].北京:科学出版社, 1995.〖ZK)〗

[10] Kunen K,Vaughan J E. Handbook of Settheoretic Topology[M].Amsterdam:North Holland,1984.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!