广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (4): 65-68.

• 综合研究 • 上一篇    下一篇

VMO函数与上半连续函数和的拓扑度

  

  1. 广东工业大学应用数学学院,广东广州510006
  • 出版日期:2010-12-25 发布日期:2010-12-25
  • 作者简介:张军(1985-),男,硕士研究生,主要研究方向为非线性泛函

Topological Degree for the Sum of VM O Functions and Multi-valued Semi-continuous Mappings

  1. Faculty of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China
  • Online:2010-12-25 Published:2010-12-25

摘要: 在有界区域上定义了VMO函数与上半连续闭凸值映射和的拓扑度,并讨论了其拓扑度的一些性质

关键词: VMO函数;上半连续闭凸值映像;拓扑度

Abstract: It defines the topological degree for the sum of VMO functions and multi.valued semi-continuous mappings with boundaries,and studies some properties of this type of topological degree.

Key words: VMO functions;Multi-valued Semi-continuous Mappings;topological degree

[1]Hai"m Brezis,Louis Nirenberg.Degree theory and BMO;Part I:Compact manifolds without boundaries[J].Selecta Mathematica,New Series,1995,1(2):201-222.

[2]Ha'/m Brezis,Louis Nirenberg.Degree theory and BMO;Part 11:Compact manifolds with boundaries[J].Selecta Mathematica,New Series,1996,2(3):309-368.

[3]Yu Qing Chen,Yeol Je Cho.Nonlinear Operator Theory in Abstract Spaces and Applications[M].New York:Nova Science Publishers,Inc,2004:72-75.

[4]M P do Carmo.Riemannian geometry[M].Boston:M P do Carmo,Riemannian geometry ,Birkhauser,1992,56-57.

[5]Brouwer L E J.Uber abbildung der mannigfaltigkeiten[J].Math Ann,1912(70):97-115.

[6]郭大钧.非线性泛函分析[M].2版.山东:山东科学技术出版社,2001,87-156.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!