广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (4): 68-70.
摘要: 在Hilbert空间中给出了关于极大单调映象方程解的一个存在性结果并应用到反周期解问题中,推广了Oko.chi的结果.
[1]Okochi H.On the existence of periodic solutions to nonlinear abstract parabolic equations[J].J Math Soc,1988(40):541-553.[2]Okoehi H.On the existence of anti-periodic solutions to a nonlinear evolution equation associated with diferential operators[J].J Funct Anal,1990(91):246-258.[3] Okochi H.On the existence of anti-periodic solutions to nonlinear parabolic equations in noneylindrieal domains[J].Nonlinear Anal,1990(14):771-783.[4]Haraux A.Anti—periodic solutions of some nonlinear evolution equations[J].Manuscripta math,1989(63):479-505.[5]Chen Y Q.Note on Massera’s theorem on anti-periodic SOlution[J].Advances in Math Sci and Appl,1999(9):125-128.[6]Chen Y Q,Cho Y J,0’Regan D.Antiperiodic solutions for evolution equations with mapping in class(S+)[J].Math Nachr,2005(278):335-362.[7]Chen Y Q.Antiperiodic solutions for semilinear evolution equations[J].J math Anal Appl,2006(315):337-348.[8]郭大均.非线性泛函分析[M].山东:山东科学技术出版社,1984.[9]Chen Y Q,Wang X D,Xu H X.Anti-periodic solutions for semilinear evolution equations[J].JmathAnalAppl,2002(273):627-636.[10]Chen Y Q,Cho Y J,Jung J S.Antiperiodie solutions for semilinear evolution equations[J].Mathematical and Computer Modeling,2004(40):1123-1130.[11]Liu Zhen-hai.Antiperiodic solutions to nonlinear evolution equations[J].Journal of Functional Analysis,2010(258):2026-2033. |
[1] | 李玉华. 非线性发展方程反周期解的边值问题[J]. 广东工业大学学报, 2011, 28(1): 82-85. |
|