广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 7-13.doi: 10.12052/gdutxb.190048
滕少华1, 冯镇业1, 滕璐瑶2, 房小兆1
Teng Shao-hua1, Feng Zhen-ye1, Teng Lu-yao2, Fang Xiao-zhao1
摘要: 大数据应用带来高维数据急剧增加,数据降维已成为重要问题.特征选择降维方法已广泛应用于模式识别领域,近年来提出了许多基于流形学习的特征选择方法,然而这类方法往往容易受到各种噪声影响.对此,本文提出一种联合低秩表示和图嵌入的高效无监督特征选择方法(JLRRGE).通过低秩表示寻找数据在低秩子空间下的表示,降低噪声的影响从而提高算法的鲁棒性,并通过自适应图嵌入方法,使选择特征保持原有的局部关系.实验结果表明,本文提出算法的分类准确率优于其他对比算法.
中图分类号:
[1] XU Y, FANG X Z, LI X L, <i>et al</i>. Data uncertainty in face recognition[J]. IEEE Transactions on Cybernetics, 2014, 44(10):1950-1961<br /> [2] YAO C, CHENG G. Approximative bayes optimality linear discriminant analysis for Chinese handwriting character recognition[J]. Neuro-computing, 2016, 207:346-353<br /> [3] FEI L K, ZHANG B, ZHANG W, <i>et al</i>. Local apparent and latent direction extraction for palm-print recognition[J]. Information Sciences, 2019, 473:59-72<br /> [4] LAN X, MA A J, YUEN P C, <i>et al</i>. Joint sparse representation and robust feature-level fusion for multicue visual tracking[J]. IEEE Transactions on Image Processing, 2015, 24(12):5826-5841<br /> [5] FANG X Z, HAN N, WU J G, <i>et al</i>. Approximate low-rank projection learning for feature extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11):5228-5241<br /> [6] 滕少华, 郑明, 刘冬宁. 面向音乐推荐的全变差图非负矩阵分解方法[J]. 计算机应用研究, 2018, 35(4):1010-1013 TENG S H, ZHENG M, LIU D L. Facing music recommended total variation non-negative matrix decomposition method[J]. Application Research of Computers, 2018, 35(4):1010-1013<br /> [7] 滕少华, 宋欢, 霍颖翔, 等. 一种增量式学习的语音字典构造方法[J]. 广东工业大学学报, 2018, 35(3):29-36 TENG S H, SONG H, HUO Y X, <i>et al</i>. An incremental learning approach in voice compression via sparse dictionary learning[J]. Journal of Guangdong University of Technology, 2018, 35(3):29-36<br /> [8] JA IN, DU IN, MAO J. Statistical pattern recognition:a review[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 27(11):1502-1502<br /> [9] FANG X Z, XU Y, LI X L, <i>et al</i>. Locality and similarity preserving embedding for feature selection[J]. Neurocomputing, 2014, 128:304-315<br /> [10] 滕少华, 卢东略, 霍颖翔, 等. 基于正交投影的降维分类方法研究[J]. 广东工业大学学报, 2017, 34(3):1-7 TENG S H, LU D L, HUO Y X, <i>et al</i>. Classification method based on dimension reduction[J]. Journal of Guangdong University of Technology, 2017, 34(3):1-7<br /> [11] IMOTO S, MIVANO S. A top-r feature selection algorithm for microarray gene data[J]. IEEE/ACM Transactions on Computational Bi-ology and Bioinformatics, 2012, 9(3):754-764<br /> [12] SHANG C, LI M, FENG S, <i>et al</i>. Feature selection via maximizing global information gain for text classification[J]. Knowledge-Based Systems, 2013, 54:298-309<br /> [13] NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint ?2, 1-norms minimization[C]//Advances in Neural Information Processing Systems 23:24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada. Curran Associates Inc. 2010.<br /> [14] FANG X Z, XU Y, LI X, <i>et al</i>. Robust semi-supervised subspace clustering via non-negative low-rank representation[J]. IEEE Transactions on Cybernetics, 2016, 46(8):1828-1838<br /> [15] ZHU X F, LI X L, <i>et al</i>. Robust joint graph sparse coding for unsupervised spectral feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 6(28):1263-1275<br /> [16] CHENG Q, ZHOU H, CHENG J. The fisher-markov selector:fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data[J]. IEEE Transactions on Software Engineering, 2011, 33(6):1217-1233<br /> [17] CAI D, ZHANG C, HE X. Unsupervised feature selection for multi-cluster data[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. USA, Washington, DC:ACM, 2010.<br /> [18] NIE F P, XU D, TSANG W H, <i>et al</i>. Flexible manifold embedding:a framework for semi-supervised and unsupervised dimension reduction[J]. IEEE Transactions on Image Processing, 2010, 19(7):1921-1932<br /> [19] HOU C P, NIE F P, LI X L, <i>et al</i>. Joint embedding learning and sparse regression:a framework for unsupervised feature selection[J]. IEEE Transactions on Cybernetics, 2013, 44(6):793-804<br /> [20] LI Z, YANG Y, LIU J, et al. Unsupervised feature selection using nonnegative spectral analysis[C]//Proceedings of 26th AAAI Conference on Artificial Intelligence. Toronto:AAAI Press, 2012:1026-1032.<br /> [21] QIAN M, ZHAI C. Robust unsupervised feature selection[C]//International Joint Conference on Artificial Intelligence. China, Beijing:ACM 2013.<br /> [22] SHI L, DU L, SHEN Y D. Robust spectral learning for unsupervised feature selection[C]//IEEE International Conference on Data Mining. China, Shenzhen:IEEE, 2015.<br /> [23] NIE F P, ZHU W, Li X L. Unsupervised feature selection with structured graph optimization[C]//Thirtieth Aaai Conference on Artificial Intelligence. USA, Phoenix:AAAI Press, 2016.<br /> [24] WEN J, HAN N, FANG X Z, <i>et al</i>. Low-rank preserving projection Via graph regularized reconstruction[J]. IEEE Transactions on Cybernetics, 2018:1-13<br /> [25] CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6):717 |
[1] | 张巍, 张圳彬. 联合图嵌入与特征加权的无监督特征选择[J]. 广东工业大学学报, 2021, 38(05): 16-23. |
[2] | 谭有新, 滕少华. 短文本特征的组合加权方法[J]. 广东工业大学学报, 2020, 37(05): 51-61. |
[3] | 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(04): 35-41. |
[4] | 陈平华, 黄辉, 麦淼, 周宏虹. 结合ReliefF和互信息的多标签特征选择算法[J]. 广东工业大学学报, 2018, 35(05): 20-25,50. |
[5] | 贺科达, 朱铮涛, 程昱. 基于改进TF-IDF算法的文本分类方法研究[J]. 广东工业大学学报, 2016, 33(05): 49-53. |
[6] | 蒋盛益, 王连喜. 聚类分析研究的挑战性问题[J]. 广东工业大学学报, 2014, 31(3): 32-38. |
|