广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 48-55,70.doi: 10.12052/gdutxb.180144

• 综合研究 • 上一篇    下一篇

分液板式冷凝器的热力性能评价

朱康达1, 陈颖1, 陈健勇1, 罗向龙1, 姚远1,2, 梁志颖1   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510006;
    2. 中国科学院 广州能源研究所, 广东 广州 510640
  • 收稿日期:2019-01-01 出版日期:2019-08-21 发布日期:2019-08-06
  • 通信作者: 陈健勇(1983-),男,副教授,硕士生导师,主要研究方向为节能、制冷系统、强化传热.E-mail:jianyong@gdut.edu.cn E-mail:jianyong@gdut.edu.cn
  • 作者简介:朱康达(1993-),男,硕士研究生,主要研究方向为换热器强化与优化.
  • 基金资助:
    广州市科技计划项目(201704030108)

Thermodynamic Performance Evaluation of Liquid-vapor Separation Plate Condenser

Zhu Kang-da1, Chen Ying1, Chen Jian-yong1, Luo Xiang-long1, Yao yuan1,2, Liang Zhi-ying1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640, China
  • Received:2019-01-01 Online:2019-08-21 Published:2019-08-06

摘要: 将分液冷凝强化传热思想应用于板式冷凝器中,建立了相应的物理和数学模型.计算了相同换热面积的7种结构分液板式冷凝器的平均传热系数和总压降,同时采用惩罚因子(Penalty Factor,PF)和?损这两个指标对其性能进行评价.计算结果表明:分液效率越高,分液板式冷凝器的综合性能越好.在分液效率为100%,质量流量为0.08~0.12 kg/s范围内,与相同面积的非分液板式冷凝器相比,分液板式冷凝器的PF值降低14.6%,?损减少2.6%~6.1%;当质量流量为0.1 kg/s,平均干度为0.3~0.75,分液板式冷凝器的PF值均小于非分液板式冷凝器,而平均干度大于0.45时,分液板式冷凝器?损小于非分液板式冷凝器.

关键词: 分液板式冷凝器, 传热系数, 压降, 惩罚因子, ?损

Abstract: "Liquid-separation condensation" theory is applied for performance enhancement in the plate condenser, with the physical and mathematical models built. Seven liquid-separation plate condensers having the same heat transfer area are proposed for heat transfer coefficient and pressure drop comparison. Their performances are evaluated by employing the penalty factor (PF) and exergy destruction. Results show that the higher the liquid-vapor separation efficiency, the better is the performance of the liquid-separation plate condensers. Compared with the conventional plate condenser with the same heat transfer area, the liquid-separation plate condenser has 14.6% lower PF and 2.6~6.1% smaller exergy destruction when the liquid-vapor separation efficiency is 100% and the mass flux is in the range of 0.08~0.12 kg/s. Moreover, when the mass flux is 0.1 kg/s, the penalty factor (PF) of liquid-separation plate condenser is lower with the vapor quality ranging between 0.3~0.75, and the exergy destruction of liquid-separation plate condenser is superior only when the vapor quality is higher than 0.45.

Key words: liquid-vapor separation plate condenser, heat transfer coefficient, pressure drop, penalty factor, exergy destruction

中图分类号: 

  • TB657.5
[1] ABU-KHADER M M. Plate heat exchangers:recent advances[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4):1883-1891
[2] 宋金虎, 宫兵, 何璟, 等. 板式冷凝器冷凝机理及应用[J]. 石油化工设备, 2011, 40(6):74-76 SONG J H, GONG B, HE J, et al. Condensation mechanism and application of plate condenser[J]. Petro-Chemical Equipment, 2011, 40(6):74-76
[3] ELDEEB R, AUTE V, RADERMACHE R. A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers[J]. Refrigeration, 2016, 65:12-26
[4] TAO X, NUIJTEN M P, FERREIRA C A I. Two-phase vertical downward flow in plate heat exchangers:Flow patterns and condensation mechanisms[J]. International Journal of Refrigeration, 2018, 85:489-510
[5] HAN D H, LEE K J, KIM Y H. The characteristics of condensation in brazed plate heat exchangers with different chevron angles[J]. Journal of the Korean Physical Society, 2003, 43(1):66-73
[6] LONGO G A. Heat transfer and pressure drop during HFC refrigerant saturated vapour condensation inside a brazed plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 2010, 53(5-6):1079-1087
[7] SARRAF K, LAUNAY S, ACHKAR G E, et al. Local vs global heat transfer and flow analysis of hydrocarbon complete condensation in plate heat exchanger based on infrared thermography[J]. International Journal of Heat and Mass Transfer, 2015, 90:878-893
[8] SOONTARAPIROMSOOK J, MAHIAN O, DALKILIC A S, et al. Effect of surface roughness on the condensation of R-134a in vertical chevron gasketed plate heat exchangers[J]. Experimental Thermal and Fluid Science, 2018, 91:54-63
[9] 彭晓峰, 吴迪, 陆规, 等. 分液式空气冷凝器:200610113304.4[P] 2006-10-11.
[10] HUA N, CHEN Y, CHEN E X, et al. Prediction and verification of the thermodynamic performance of vapor-liquid separation condenser[J]. Energy, 2013, 58:384-397
[11] 钟天明, 陈颖, 邓立生, 等. 气液分离冷凝器综合性能分析[J]. 热科学与技术, 2013, 12(3):200-205 ZHONG T M, CHEN Y, DENG L S, et al. Comprehensive performance analysis of liquid-vapor separated condenser[J]. Journal of Thermal Science and Technology, 2013, 12(3):200-205
[12] 李连涛. 带有分液结构的管壳式冷凝器的设计与实验研究[D]. 天津:天津商业大学, 2016.
[13] LUO X L, LIANG Z H, GUO G Q, et al. Thermo-economic analysis and optimization of a zeotropic fluid organic Rankine cycle with liquid-vapor separation during condensation[J]. Energy Conversion & Management, 2017, 148:517-532
[14] CAVALLINI A, BROWN J S, COL D D, et al. In-tube condensation performance of refrigerants considering penalization terms (exergy losses) for heat transfer and pressure drop[J]. International Journal of Heat & Mass Transfer, 2010, 53(13-14):2885-2896
[15] YAN Y Y, LIO H C, LIN T F. Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 1999, 42(6):993-1006
[16] KUO W S, LIE Y M, HSIEH Y Y, et al. Condensation heat transfer and pressure drop of refrigerant R-410A flow in a vertical plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 2005, 48(25-26):5205-5220
[17] CHEN J, HAVTUN H, PALM B. Conventional and advanced exergy analysis of an ejector refrigeration system[J]. Applied Energy, 2015, 144:139-151
[18] LEMMON E W, MCLINDEN M O, HUBER M L. NIST Standard Reference Database 23:Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0[R]. National Institute of Standards and Technology, Standard Reference Data Program. Gaithersburg, USA, 2010.
[19] DJORDJEVIĆ E M, KABELAC S, ŠERBANOVIĆ P S. Heat transfer coefficient and pressure drop during refrigerant R-134a condensation in a plate heat exchanger[J]. Chemical Papers, 2008, 62(1):78-85
[20] 兰州石油机械研究所. 换热器[M]. 上册. 北京:中国石化出版社, 2013:912-913.
[1] 梁志颖, 陈健勇, 陈颖, 罗向龙, 杨智, 梁颖宗. 多流程分液板式冷凝器的变工况性能研究[J]. 广东工业大学学报, 2022, 39(01): 99-106.
[2] 丁榕, 李云海, 陈健勇, 陈颖, 罗向龙, 杨智. 带分液结构蒸发器的性能研究[J]. 广东工业大学学报, 2018, 35(04): 105-110.
[3] 钟浩元, 张仁元, 史保新, 李石栋, 刘良德. 热二极管在储能式太阳热水器中的应用研究[J]. 广东工业大学学报, 2010, 27(1): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!