广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (01): 15-22.doi: 10.12052/gdutxb.190096

• 综合研究 • 上一篇    下一篇

相变材料/导热翅片复合热管理系统应用于三元体系锂离子动力电池模组实验研究

张江云, 张国庆, 陈炫庄, 甄志诚   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2019-07-11 出版日期:2020-01-25 发布日期:2019-12-10
  • 通信作者: 张国庆(1963-),男,教授,博士生导师,主要研究方向为新能源及节能环保,E-mail:pdzgq008@126.com E-mail:pdzgq008@126.com
  • 作者简介:张江云(1986-),女,博士,主要研究方向为动力电池热管理系统设计
  • 基金资助:
    国家自然科学基金资助项目(21875046)

An Experimental Study of Thermal Management System Based on Phase Change Materials Coupled with Low Fins for Ternary Lithium-ion Power Battery Module

Zhang Jiang-yun, Zhang Guo-qing, Chen Xuan-zhuang, Zhen Zhi-cheng   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-07-11 Online:2020-01-25 Published:2019-12-10

摘要: 以三元动力电池模组为研究对象,通过研究自然对流、相变材料(Phase Change Materials,PCM)、相变材料/导热翅片3种不同散热技术,分析3种不同热管理系统(Battery Thermal Management System,BTMS)在室温(25℃)和高温(45℃)工况下不同恒定倍率放电及充放电循环过程中的温度变化规律、产热速率及温升速率,测试整个电化学反应进程中的最大温度及最大温差技术指标,深入研究不同散热介质对于电池组安全性能的影响机理。结果表明,无论室温/高温环境条件恒定倍率放电和大电流充放电循环工况,相变材料/导热翅片电池组通过对电池组侧面和正负极处进行强化传热,具有明显有效的降温和均衡温度的能力,可以实现电池组最高温度的快速降低,并维持电池模组最高温差在5℃以内,满足动力电池模组的散热需求。

关键词: 三元动力电池模组, 相变材料, 导热翅片, 热管理, 均温

Abstract: For evaluating the heat dissipation properties of different battery thermal management systems (BTMS), three cooling technologies containing natural convection, phase change materials (PCM) and PCM/low fins were applied in the ternary power battery module. Furthermore, relative experiments at different discharge rates and charge-discharge cycles under room/high temperature (25℃/45℃) were carried out to compare the temperature change principles, heat generation rate and temperature increasing gradient. Ultimately, peak temperature and the maximum temperature difference during the overall discharge process were deeply assessed to investigate the influence of diverse heat dissipation medium on operation safety. Testing results indicate that no matter under high discharge rate or large current charge-discharge cycle conditions under room and higher temperature environment, the battery module adopting PCM/heat-conducting fins cooling method through the heat dissipation of negative, positive locations and surrounding surfaces area, exhibits an outstanding ability to cool down as soon as possible and stretch the temperature, accompanying with the peak temperature uniformity within 5℃, and further meeting the temperature consistency requirements of the power battery modules.

Key words: ternary power battery module, phase change material, heat conductive fins, thermal management system, balancing the temperature

中图分类号: 

  • TK112
[1] 张国庆, 马莉, 张海燕, 等. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1):1-4
ZHANG G Q, MA L, ZHANG H Y, et al. Heat generation behavior of HEV battery and its thermal management technology[J]. Journal of Guangdong University of Technology, 2008, 25(1):1-4
[2] RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4554-4571
[3] 饶中浩, 张国庆. 电池热管理[M]. 北京:科学出版社, 2015:7-8.
[4] LIU X H, AI W L, MAX N M, et al. The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs[J]. Applied Energy, 2019, 248:489-499
[5] ZHU X Q, WANG Z P, WANG Y T, et al. Overcharge investigation of large format Lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles:thermal runaway features and safety management method[J]. Energy, 2019, 169:868-880
[6] LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375:241-254
[7] KONG D P, WEN R X, PING P, et al. Study on degradation behavior of commercial 18650 LiAlNiCoO2 cells in over-charge conditions[J]. International Journal of Energy Research, 2019, 43(1):552-567
[8] PARHIZI M, AHMED M B, JAIN A. Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370:27-35
[9] ANDREY W G, SEBASTIAN S, RENE P, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70):57171-57186
[10] 王子缘, 张国庆, 高冠勇, 等. 18650圆柱形电芯的产热行为研究[J]. 广东工业大学学报, 2017, 34(1):45-49
WANG Z Y, ZHANG G Q, GAO G Y, et al. A study of heat generation behavior of 18650 cylindrical battery[J]. Journal of Guangdong University of Technology, 2017, 34(1):45-49
[11] HUANG P F, CHEN H D, VERMA A, et al. Non-dimensional analysis of the criticality of Li-ion battery thermal runaway behavior[J]. Journal of Hazardous Materials, 2019, 369:268-278
[12] GAO S, FENG X N, LU L G. An experimental and analytical study of thermal runaway propagation in a large format Lithium-ion battery module with NCM pouch-cells in parallel[J]. International Journal of Heat and Mass Transfer, 2019, 135:95-103
[13] FENG X N, ZHENG S Q, REN D S. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158:4684-4689
[14] SHAHABEDDIN K M, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273:431-439
[15] FAN Y Q, BAO Y, LING C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155:96-109
[16] CAO W J, ZHAO C R, WANG Y W, et al. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 138:1178-1187
[17] CHEN S Q, PENG X B, BAO N S, et al. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module[J]. Applied Thermal Engineering, 2019, 156:324-339
[18] GULFAM R, ZHANG P, MENG Z N. Advanced thermal systems driven by paraffin-based phase change materials-A review[J]. Applied Energy, 2019, 238:582-611
[19] LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:a review[J]. Energy Conversion and Management, 2017, 150:304-330
[20] MEHDI M K, EHSAN H, MEHDI A. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection[J]. International Journal of Thermal Sciences, 2019, 141:47-61
[21] TAUSEEF R, ALI H M, JANJUA M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135:649-673
[22] HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J]. Energy Conversion and Management, 2019, 182:9-20
[23] BAI F F, CHEN M B, SONG W J, et al. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate[J]. Energy, 2019, 167:561-574
[24] LI X X, ZHOU D Q, ZHANG G Q, et al. Experimental investigation of the thermal performance of silicon cold plate for battery thermal management system[J]. Applied Thermal Engineering, 2019, 155:331-340
[25] SONG L M, ZHANG H Y, YANG C. Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module[J]. International Journal of Heat and Mass Transfer, 2019, 133:827-841
[1] 吴锡鸿, 叶国华, 黄润业, 张国庆, 杨晓青, 李新喜. 新型管状相变材料热管理系统的数值仿真与实验研究[J]. 广东工业大学学报, 2022, 39(03): 133-138.
[2] 祝盼盼, 黄金. 多孔基体Na2HPO4〖KG-*3〗·〖KG-*3〗12H2O复合材料体系的相变特性[J]. 广东工业大学学报, 2014, 31(2): 128-132.
[3] 张黎, 柯秀芳. 掺杂对相变材料导热系数的影响[J]. 广东工业大学学报, 2010, 27(4): 39-41.
[4] 吴忠杰; 张国庆; . 混合动力车用镍氢电池的液体冷却系统[J]. 广东工业大学学报, 2008, 25(4): 28-31.
[5] 张国庆; 马莉; 张海燕; . HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!