广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (01): 15-22.doi: 10.12052/gdutxb.190096
张江云, 张国庆, 陈炫庄, 甄志诚
Zhang Jiang-yun, Zhang Guo-qing, Chen Xuan-zhuang, Zhen Zhi-cheng
摘要: 以三元动力电池模组为研究对象,通过研究自然对流、相变材料(Phase Change Materials,PCM)、相变材料/导热翅片3种不同散热技术,分析3种不同热管理系统(Battery Thermal Management System,BTMS)在室温(25℃)和高温(45℃)工况下不同恒定倍率放电及充放电循环过程中的温度变化规律、产热速率及温升速率,测试整个电化学反应进程中的最大温度及最大温差技术指标,深入研究不同散热介质对于电池组安全性能的影响机理。结果表明,无论室温/高温环境条件恒定倍率放电和大电流充放电循环工况,相变材料/导热翅片电池组通过对电池组侧面和正负极处进行强化传热,具有明显有效的降温和均衡温度的能力,可以实现电池组最高温度的快速降低,并维持电池模组最高温差在5℃以内,满足动力电池模组的散热需求。
中图分类号:
[1] 张国庆, 马莉, 张海燕, 等. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1):1-4 ZHANG G Q, MA L, ZHANG H Y, et al. Heat generation behavior of HEV battery and its thermal management technology[J]. Journal of Guangdong University of Technology, 2008, 25(1):1-4 [2] RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4554-4571 [3] 饶中浩, 张国庆. 电池热管理[M]. 北京:科学出版社, 2015:7-8. [4] LIU X H, AI W L, MAX N M, et al. The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs[J]. Applied Energy, 2019, 248:489-499 [5] ZHU X Q, WANG Z P, WANG Y T, et al. Overcharge investigation of large format Lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles:thermal runaway features and safety management method[J]. Energy, 2019, 169:868-880 [6] LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375:241-254 [7] KONG D P, WEN R X, PING P, et al. Study on degradation behavior of commercial 18650 LiAlNiCoO2 cells in over-charge conditions[J]. International Journal of Energy Research, 2019, 43(1):552-567 [8] PARHIZI M, AHMED M B, JAIN A. Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370:27-35 [9] ANDREY W G, SEBASTIAN S, RENE P, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70):57171-57186 [10] 王子缘, 张国庆, 高冠勇, 等. 18650圆柱形电芯的产热行为研究[J]. 广东工业大学学报, 2017, 34(1):45-49 WANG Z Y, ZHANG G Q, GAO G Y, et al. A study of heat generation behavior of 18650 cylindrical battery[J]. Journal of Guangdong University of Technology, 2017, 34(1):45-49 [11] HUANG P F, CHEN H D, VERMA A, et al. Non-dimensional analysis of the criticality of Li-ion battery thermal runaway behavior[J]. Journal of Hazardous Materials, 2019, 369:268-278 [12] GAO S, FENG X N, LU L G. An experimental and analytical study of thermal runaway propagation in a large format Lithium-ion battery module with NCM pouch-cells in parallel[J]. International Journal of Heat and Mass Transfer, 2019, 135:95-103 [13] FENG X N, ZHENG S Q, REN D S. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158:4684-4689 [14] SHAHABEDDIN K M, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273:431-439 [15] FAN Y Q, BAO Y, LING C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155:96-109 [16] CAO W J, ZHAO C R, WANG Y W, et al. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 138:1178-1187 [17] CHEN S Q, PENG X B, BAO N S, et al. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module[J]. Applied Thermal Engineering, 2019, 156:324-339 [18] GULFAM R, ZHANG P, MENG Z N. Advanced thermal systems driven by paraffin-based phase change materials-A review[J]. Applied Energy, 2019, 238:582-611 [19] LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:a review[J]. Energy Conversion and Management, 2017, 150:304-330 [20] MEHDI M K, EHSAN H, MEHDI A. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection[J]. International Journal of Thermal Sciences, 2019, 141:47-61 [21] TAUSEEF R, ALI H M, JANJUA M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135:649-673 [22] HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J]. Energy Conversion and Management, 2019, 182:9-20 [23] BAI F F, CHEN M B, SONG W J, et al. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate[J]. Energy, 2019, 167:561-574 [24] LI X X, ZHOU D Q, ZHANG G Q, et al. Experimental investigation of the thermal performance of silicon cold plate for battery thermal management system[J]. Applied Thermal Engineering, 2019, 155:331-340 [25] SONG L M, ZHANG H Y, YANG C. Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module[J]. International Journal of Heat and Mass Transfer, 2019, 133:827-841 |
[1] | 吴锡鸿, 叶国华, 黄润业, 张国庆, 杨晓青, 李新喜. 新型管状相变材料热管理系统的数值仿真与实验研究[J]. 广东工业大学学报, 2022, 39(03): 133-138. |
[2] | 祝盼盼, 黄金. 多孔基体Na2HPO4〖KG-*3〗·〖KG-*3〗12H2O复合材料体系的相变特性[J]. 广东工业大学学报, 2014, 31(2): 128-132. |
[3] | 张黎, 柯秀芳. 掺杂对相变材料导热系数的影响[J]. 广东工业大学学报, 2010, 27(4): 39-41. |
[4] | 吴忠杰; 张国庆; . 混合动力车用镍氢电池的液体冷却系统[J]. 广东工业大学学报, 2008, 25(4): 28-31. |
[5] | 张国庆; 马莉; 张海燕; . HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4. |
|