广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (03): 133-138.doi: 10.12052/gdutxb.210011

• • 上一篇    

新型管状相变材料热管理系统的数值仿真与实验研究

吴锡鸿, 叶国华, 黄润业, 张国庆, 杨晓青, 李新喜   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2022-01-13 出版日期:2022-05-10 发布日期:2022-05-19
  • 通信作者: 杨晓青(1983-),男,副教授,硕士生导师,主要研究方向为电池热管理的开发与应用,E-mail:yangxiaoqing@gdut.edu.cn;李新喜(1985-),男,讲师,主要研究方向为动力电池管理系统,E-mail:pkdlxx@gdut.edu.cn
  • 作者简介:吴锡鸿(1995-),男,硕士研究生,主要研究方向为相变材料电池热管理
  • 基金资助:
    国家自然科学基金资助项目(21875046);广州市新兴产业发展资金资助项目(2018841)

Numerical Simulation and Experimental Study of Thermal Management System Based on Tubular Phase Change Material

Wu Xi-hong, Ye Guo-hua, Huang Run-ye, Zhang Guo-qing, Yang Xiao-qing, Li Xin-xi   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-01-13 Online:2022-05-10 Published:2022-05-19

摘要: 设计了一种新型的管状复合相变材料(tubular Composite PCM,t-CPCM)结构,用以替代传统的块状复合相变材料(block-shaped Composite PCM,b-CPCM)结构,将其耦合强制对流换热后应用于电池热管理。仿真结果表明,相比于b-CPCM电池仿真模型,t-CPCM电池仿真模型不仅流道分布更加均匀,而且对流换热面积更大,理论计算得出的对流换热热阻仅为0.8 K·W−1,是b-CPCM电池仿真模型的1/20。实验结果表明,t-CPCM电池模组优异的散热性能可以有效地控制电池温度,t-CPCM电池模组的最高温度仅为46.9 ℃,温差为0.8 ℃;而b-CPCM电池模组的最高温度高达51 ℃,温差均为5 ℃。所设计的管状复合相变材料在电池热管理方面具有良好的应用价值。

关键词: 相变材料, 管状, 仿真, 热阻, 电池热管理, 强制对流换热

Abstract: A new type of tubular composite phase change material (t-CPCM) structure is designed to replace the traditional block-shaped composite phase change material (b-CPCM) structure, coupled with forced convection heat transfer and applied to battery thermal management. The simulation results show that, compared with the b-CPCM model, the t-CPCM model not only has a more uniform flow channel distribution, but also a larger convective heat transfer area. The theoretically calculated convective heat transfer thermal resistance is 0.8 K·W−1, which is 20 times less than b-CPCM model. The experimental results show that the excellent heat dissipation performance of the t-CPCM battery module can effectively control the battery temperature. For example, the maximum temperature of the t-CPCM battery module is 46.9 ℃, and the temperature difference is only 0.8 ℃; as for the b-CPCM battery module, the highest temperature is as high as 51 ℃, and the temperature difference is 5 ℃. The designed t-CPCM has important application value in battery thermal management.

Key words: phase change material, tubular, simulation, thermal resistance, battery thermal management, forced convection heat transfer

中图分类号: 

  • TK112
[1] SHAHBAZ M, RAGHUTLA C, CHITTEDI K R, et al. The effect of renewable energy consumption on economic growth: evidence from the renewable energy country attractive index [J]. Energy (Oxford), 2020, 207: 118162.
[2] BUTTURI M A, LOLLI F, SELLITTO M A, et al. Renewable energy in eco-industrial parks and urban-industrial symbiosis: a literature review and a conceptual synthesis [J]. Applied Energy, 2019, 255: 113825.
[3] LIU Z, HAO H, CHENG X, et al. Critical issues of energy efficient and new energy vehicles development in China [J]. Energy Policy, 2018, 115: 92-97.
[4] LIN B, WU W. Why people want to buy electric vehicle: an empirical study in first-tier cities of China [J]. Energy Policy, 2018, 112: 233-241.
[5] WU W, WANG S, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management [J]. Energy Conversion and Management, 2019, 182: 262-281.
[6] XU Y, LI X, LIU X, et al. Experiment investigation on a novel composite silica gel plate coupled with liquid-cooling system for square battery thermal management [J]. Applied Thermal Engineering, 2021, 184: 116217.
[7] 饶中浩, 汪双凤, 洪思慧, 等. 电动汽车动力电池热管理实验与数值分析[J]. 工程热物理学报, 2013(6): 1157-1160.
RAO Z H, WANG S F, HONG S H, et al. Thermal management experiment and numerical analysis of electric vehicle power battery [J]. Journal of Engineering Thermophysics, 2013(6): 1157-1160.
[8] 罗庆凯, 王志荣, 刘婧婧, 等. 18650型锂离子电池热失控影响因素[J]. 电源技术, 2016, 40(2): 277-279.
LUO Q K, WANG Z R, LIU J J, et al. Influencing factors of thermal runaway of 18650 lithium-ion battery [J]. Power Supply Technology, 2016, 40(2): 277-279.
[9] 李惠, 吉维肖, 曹余良, 等. 锂离子电池热失控防范技术[J]. 储能科学与技术, 2018, 35(3): 17-24.
LI H, JI W X, CAO Y L, et al. Thermal runaway prevention technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2018, 35(3): 17-24.
[10] JILTE R D, KUMAR R, AHMADI M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling [J]. Applied Thermal Engineering, 2019, 161: 114199.
[11] IANNICIELLO L, BIWOLÉ P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials [J]. Journal of Power Sources, 2018, 378: 383-403.
[12] TENG T P, CHENG C M, CHENG C P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite [J]. Applied Thermal Engineering, 2013, 50(1): 637-644.
[13] LYU Y, LIU G, ZHANG G, et al. A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules [J]. Journal of Power Sources, 2020, 468: 228398.
[14] MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix [J]. Applied Thermal Engineering, 2006, 26(14-15): 1652-1661.
[15] LYU Y, YANG X, LI X, et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins [J]. Applied Energy, 2016, 178: 376-382.
[16] JIANG Z Y, QU Z G, ZHANG J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy [J]. Applied Energy, 2020, 268: 115007.
[17] 杨世铭, 陶文铨. 传热学: 第4版[M]. 北京: 高等教育出版社, 2006.
[18] 靳鹏超, 王世学. 一种使用相变材料的新型电动汽车电池热管理系统[J]. 化工进展, 2014(10): 2608-2612.
JIN P C, WANG S X. A new electric vehicle battery thermal management system using phase change materials [J]. Chemical Industry Progress, 2014(10): 2608-2612.
[1] 董振宁, 王俊杰, 罗克文, 陈浪城. 网约车乘客隐私保护的演化博弈研究[J]. 广东工业大学学报, 2023, 40(01): 19-28.
[2] 罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖. 有机朗肯循环系统换热设备仿真研究[J]. 广东工业大学学报, 2022, 39(04): 128-134.
[3] 何淋, 柯秀芳, 张国庆, 李新喜. 导热硅胶/相变材料复合组件在电池热管理中的应用[J]. 广东工业大学学报, 2021, 38(01): 104-110.
[4] 李晋芳, 韦光扬, 何汉武, 蔡嘉鸿, 陈基荣. 一种基于质点弹簧模型的牙龈软组织形变仿真算法[J]. 广东工业大学学报, 2020, 37(03): 49-54.
[5] 赵泽兴, 石智伟, 左茂武. 基于Matlab GUI仿真多光束干涉形成光子晶格[J]. 广东工业大学学报, 2020, 37(03): 63-69.
[6] 王晓锋, 何小琦, 尧彬. PBGA封装回流焊翘曲变形仿真与验证[J]. 广东工业大学学报, 2020, 37(02): 94-101.
[7] 张江云, 张国庆, 陈炫庄, 甄志诚. 相变材料/导热翅片复合热管理系统应用于三元体系锂离子动力电池模组实验研究[J]. 广东工业大学学报, 2020, 37(01): 15-22.
[8] 吴丹琦, 赖俊升, 杨俊华, 李学聪, 赖来利, 熊锋俊. 基于局部粒子群算法的家庭用电负荷优化控制策略[J]. 广东工业大学学报, 2019, 36(06): 66-73.
[9] 孙晓龙, 马强, 邹超, 贺绍华, 孟涛, 王娉诺. 多因素状况下热阻涂料固化特性及机理研究[J]. 广东工业大学学报, 2019, 36(01): 100-106.
[10] 林贵祥, 刘强, 张浩, 邓加喜, 郭芳名. 一种集成仿真的快速定制设计方法[J]. 广东工业大学学报, 2016, 33(04): 44-50.
[11] 王国林, 沈飞, 周海超, 杨建. 轮胎花纹泵浦噪声分析及低噪声轮胎花纹设计[J]. 广东工业大学学报, 2016, 33(04): 51-55.
[12] 翁建城, 何小琦, 周斌, 刘岗岗, 赵磊, 恩云飞. 一种计算对流空气条件下MCM器件结温的方法[J]. 广东工业大学学报, 2014, 31(4): 104-108.
[13] 杜军特, 李扬. 参数自整定模糊PID控制方法及其在漆包机中的应用[J]. 广东工业大学学报, 2014, 31(2): 58-63.
[14] 王行, 阳林, 冯勇, 彭仁杰. 基于ADAMS的赛车整车建模与操纵稳定性仿真评价[J]. 广东工业大学学报, 2014, 31(2): 104-108.
[15] 祝盼盼, 黄金. 多孔基体Na2HPO4〖KG-*3〗·〖KG-*3〗12H2O复合材料体系的相变特性[J]. 广东工业大学学报, 2014, 31(2): 128-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!