广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (01): 48-52.doi: 10.12052/gdutxb.190078
梁仕华1, 林坚鹏1,2, 牛九格1, 冯德銮1, 龚星1, 罗庆姿1
Liang Shi-hua1, Lin Jian-peng1,2, Niu Jiu-ge1, Feng De-luan1, Gong Xing1, Luo Qing-zi1
摘要: 微生物诱导碳酸钙沉淀(microbial induced calcium carbonate precipitation,MICP)是一种新兴的环保地基加固技术,使用该技术需消耗大量化学分析级试剂,如尿素、钙盐等,对环境等造成一定的不良影响。基于利用废弃资源的理念,选取厨余垃圾生蚝壳作为MICP固化砂土钙源,并与用硝酸钙、氯化钙作为钙源进行对比。通过无侧限抗压强度试验、渗透试验、碳酸钙质量分数测试、干密度试验和扫描电镜试验(SEM)等探讨该方法的可行性。试验结果表明,以生蚝壳为钙源的MICP固化砂柱的平均孔径最大,但其表观孔隙率最低,无侧限抗压强度、渗透系数、碳酸钙质量分数、干密度等物理力学指标均优于化学钙。SEM试验结果显示,不同钙源固化砂柱砂颗粒表面均有碳酸钙沉淀生成,生蚝壳钙源获得的碳酸钙沉淀晶体形态是表面比较粗糙,伴有微小孔隙的球体形态;硝酸钙获得的碳酸钙沉淀是介于球状和棱柱体之间的多棱角的簇状;氯化钙获得的碳酸钙沉淀呈现颗粒相互交错堆积的簇状。
中图分类号:
[1] MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation[J]. Géotechnique, 2013, 63(4):302-312 [2] CHU J, IVANOV V, NAEIMI M, et al. Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9(2):277-285 [3] WILEN B M, JIN B, LANT P. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research, 2003, 37(9):2127 [4] CHENG L, SHAHIN M A, CORD-RUWISCH R. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments[J]. Géotechnique, 2014, 64(12):1010 [5] CHOI S G, WU S, CHU J. Biocementation for sand using an eggsheel as calcium source[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(10):6016010 [6] LIU L, LIU H, XIAO Y, et al. Biocementation of calcareous sand using soluble calcium derived from calcareous sand[J]. Bulletin of Engineering Geology & the Environment, 2018, 77(4):1781-1791 [7] CHOI S G, JIAN C, BROWN R C, et al. Sustainable biocement production via microbially-induced calcium carbonate precipitation:use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(6):5183-5190 [8] 李峰. 以牡蛎壳为原料制备食品级添加剂丙酸钙的工艺研究[D]. 西安:西北大学, 2008. [9] 张海鹏. 用蚝壳制备丙酸钙的研究[J]. 山东化工, 2018, 47(12):31-32 ZHANG H P. Research in calcium propionate preparation with oyster shell[J]. Shandong Chemical Industry, 2018, 47(12):31-32 [10] 梁仕华, 牛九格, 戴君. 循环灌浆次数对微生物固化砂土效果的影响[J]. 工业建筑, 2018, 48(7):22-26 LIANG S H, NIU J G, DAI J. Effect of the number of grouting cycles on bio-cemented sand[J]. Industrial Construction, 2018, 48(7):22-26 [11] 梁仕华, 戴君, 李翔, 等. 不同固化方式对微生物固化砂土强度影响的研究[J]. 工业建筑, 2017, 47(2):82-86 LIANG S H, DAI J, LI X, et al. Study of effects of different curing methods on the strength of bio-cemented sand soil[J]. Industrial Construction, 2017, 47(2):82-86 [12] NIU J G, LIANG S H, GONG X, et al. Experimental study on the effect of grouting interval on microbial induced calcium carbonate precipitation[J]. IOP Conference Series:Earth and Environmental Science, 2018, 186:012071. DOI:10.1088/1755-1315/186/3/012071. [13] GONG X, NIU J G, LIANG S H, et al. Environmental effect of grouting batches on microbial-induced calcite precipitation[J]. Ekoloji, 2019, 28(107):929-936 [14] 梁仕华, 牛九格, 房采杏, 等. 营养液钙源对微生物固化砂土效果影响的试验研究[J]. 防灾减灾工程学报, 2018, 38(5):781-786 LIANG S H, NIU J G, FANG C X, et al. Experimental study on the effect of nutrient solution calcium sources on bio-cemented sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5):781-786 [15] 徐日庆, 邓祎文, 徐波, 等. 基于SEM图像的软土接触面积定量研究[J]. 应用基础与工程科学学报, 2016, 24(2):295-303 XU R Q, DENG Y W, XU B, et al. Soft clay contact area quantitative research based on SEM images[J]. Journal of Basic Science and Engineering, 2016, 24(2):295-303 [16] 徐日庆, 邓祎文, 徐波, 等. 基于SEM图像信息的软土三维孔隙率定量分析[J]. 地球科学与环境报, 2015, 37(3):104-110 XU R Q, DENG Y W, XU B, et al. Quantitative analysis of soft clay three-dimensional porosity based on SEM image information[J]. Journal of Earth Sciences and Environment, 2015, 37(3):104-110 |
No related articles found! |
|