广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 17-22.doi: 10.12052/gdutxb.190157

• • 上一篇    下一篇

基于Inception与Residual组合网络的农作物病虫害识别

冯广, 孔立斌, 石鸣鸣, 贺敏慧, 何雅萱   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2019-12-17 出版日期:2020-05-12 发布日期:2020-05-12
  • 作者简介:冯广(1973-),男,高级工程师,博士,主要研究方向为网络控制、机器学习、大数据
  • 基金资助:
    国家自然科学基金资助项目(70971027)

Crop Pest Recognition Based on Inception and Residual Combined Network

Feng Guang, Kong Li-bin, Shi Ming-ming, He Min-hui, He Ya-xuan   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-12-17 Online:2020-05-12 Published:2020-05-12

摘要: 针对我国农作物病虫害识别方法中存在的速度慢、主观性强、所需专业知识要求高以及识别成本高等问题,提出一种基于Inception与Residual结构组合的Inception-resnet-v2网络模型的农作物病虫害识别方法,以实现精准高效的农作物病虫害识别。网络使用residual结构,采用跨层连接方式将低层特征与高层特征进行组合学习以增加网络深度。同时加入了Inception结构,既能保持网络结构的稀疏性,又能利用密集矩阵的高计算性能,加快了训练速度。最后通过Softmax分类器进行多分类预测。与传统方法相比,本文方法收敛速度更快,不仅准确率达到96.67%、精确度达到90.77%、召回率达到89.72%,还使病虫害识别的不同类别更加均衡,改善了传统方法中对特定类别识别效果差的问题。

关键词: 农作物病虫害识别, Inception结构, Residual结构, Inception-resnetl-v2, Softmax分类器

Abstract: Aiming at the problems of slow speed, subjectivity, high requirement of professional knowledge and high recognition cost in the identification methods of crop pests and diseases in China, a crop pest and disease identification method is proposed based on Inception-resnet-v2 network model combining Inception and Residual structure. To achieve accurate and efficient crop pest identification, the network uses a residual structure to combine low-level features with high-level features to increase network depth. At the same time, the Inception structure is added, which not only maintains the sparsity of the network structure, but also utilizes the high computational performance of the dense matrix to speed up the training. Finally, the multi-class prediction is performed by the Softmax classifier. Compared with the traditional method, the proposed method converges faster, not only with an accuracy rate of 96.67%, but also with an accuracy of 90.77% and a recall rate of 89.72%. It also makes the different categories of pest and disease identification more balanced, improving the specific methods in the traditional methods, by which the recognition effect is poor.

Key words: crop pest recognition, Inception structure, Residual structure, Inception-resnetl-v2, Softmax classifier

中图分类号: 

  • TP391.41
[1] 赵国华, 王婷. 基于ARM的作物病虫害自动识别系统设计[J]. 南方农机, 2019, 50(5): 62
[2] 柴帅, 李壮举. 基于迁移学习的番茄病虫害检测[J]. 计算机工程与设计, 2019, 40(6): 1701-1705 CHAI S, LI Z J. Detection of tomato pests and diseases based on transfer learning [J]. Computer Engineering and Design, 2019, 40(6): 1701-1705
[3] 孙军. 基于图像目标检测的茶树病虫害预警研究[J]. 福建茶叶, 2018, 40(12): 11 SUN J. Study on early warning of insect pests in tea yard based on image target detection [J]. Tea in Fujian, 2018, 40(12): 11
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image net classification with deep convolutional neural networks[C]//NIPS 2012: Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL: Curran Associates Inc, 2012: 1097-1105.
[5] SZEGEDY C, TOSHEV A, ERHAN D. Deep neural networks for object detection[C]// Proceedings of the 2013 International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2013: 2553-2561.
[6] ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]//CVPR 2014: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 2155-2162.
[7] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916
[8] ROSS G. Fast R-CNN[C]// The IEEE International Conference on Computer Vision (ICCV). Washington, DC: IEEE Computer Society, 2015: 1440-1448.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//ECCV 2016: Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
[10] 汪京京, 张武, 刘连忠, 等. 农作物病虫害图像识别技术的研究综述[J]. 计算机工程与科学, 2014, 36(7): 1363-1370 WANG J J, ZHANG W, LIU L Z, et al. Summary of crop diseases and pests image recognition technology [J]. Computer Engineering & Science, 2014, 36(7): 1363-1370
[11] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Washington (CVPR), DC: IEEE Computer Society, 2015: 1-9.
[12] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC: IEEE Computer Society, 2016: 770-778.
[13] 蔡建新, 汪仁煌, 黄颖怡. 亮度归一化在图像处理中的应用[J]. 广东工业大学学报, 2008, 25(4): 65-68 CAI J X, WANG R H, HUANG Y Y. Application of brightness normalization in image processing [J]. Journal of Guangdong University of Technology, 2008, 25(4): 65-68
[14] 陈雷, 袁媛. 大田作物病害识别研究图像数据集[DB/OL]. Science Data Bank, 2019. (2019-03-20)[2019-07-12]. DOI: 10.11922/sciencedb.745.
[1] 邓杰航, 袁仲鸣, 林好润, 顾国生. 协同超像素和视觉显著性的图像质量评价[J]. 广东工业大学学报, 2021, 38(05): 33-39.
[2] 钟映春, 孙思语, 吕帅, 罗志勇, 熊勇良, 何惠清. 铁塔航拍图像中鸟巢的YOLOv3识别研究[J]. 广东工业大学学报, 2020, 37(03): 42-48.
[3] 钟映春, 吕帅, 罗鹏, 简裕涛, 褚千琨. 烤瓷牙内部缺陷的图像检测及其特征统计分析[J]. 广东工业大学学报, 2018, 35(01): 1-5.
[4] 叶向荣, 刘怡俊, 陈云华, 熊炯涛. 基于L1/2自适应稀疏正则化的图像重建算法[J]. 广东工业大学学报, 2017, 34(06): 43-48.
[5] 谢晶梅, 宋亚男, 徐荣华, 黄道年. 图像拼接中权重的改进设计研究[J]. 广东工业大学学报, 2017, 34(06): 49-53,67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!