广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 59-62.doi: 10.12052/gdutxb.190126
张文杰1, 杨荣领2
Zhang Wen-jie1, Yang Rong-ling2
摘要: 在Biś和Patrão定义的拓扑熵基础上给出了度量空间中有限个真映射构成的半群的拓扑压,并证明了局部紧可分度量空间上由真映射构成的自由半群的拓扑压和它的一点紧化空间上对应的拓扑压相等,在此基础上给出真映射构成的半群的拓扑压的性质。
中图分类号:
[1] RUELLE D. Statistical mechanics on a compact set with ZpAction satisfying expansiveness and specification [J]. Transactions of the American Mathematical Society, 1973, 185: 237-251 [2] WALTERS P. An introduction to ergodic theory [M]. New York: Springer-Verlag, Heidelberg, Berlin, 1982. [3] PESIN Y B , PITSKEL B S. Topological pressure and the variational principle for noncompact sets [J]. Functional Analysis and Its Applications, 1984, 18(4): 307-318 [4] BARREIRA, LUIS M. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems [J]. Ergodic Theory and Dynamical Systems, 1996, 16(5): 871-927 [5] 胡超杰, 马东魁. 一些紧致系统的拓扑序列熵和广义specification性质[J]. 广东工业大学学报, 2007, 24(2): 24-26 HU C J, MA D K. Topological sequence entropy of some compact systems and generalized Specification property [J]. Journal of Guangdong University of Technology, 2007, 24(2): 24-26 [6] BIŚ A. Entropies of a semigroup of maps [J]. Discrete and Continuous Dynamical Systems, 2004, 11(2-3): 639-648 [7] BUFETOV A. Topological entropy of free semigroup actions and skew-product transformations [J]. Journal of Dynamical and Control Systems, 1999, 5(1): 137-143 [8] MA D K, LIU S H. Some properties of topological pressure of a semigroup of continuous maps [J]. Dynamical System, 2014, 29(1): 1-17 [9] LIN X G, MA D K, WANG Y P. On the measure-theoretic entropy and topological pressure of free semigroup actions [J]. Ergodic Theory and Dynamical Systems, 2016, 38(2): 1-37 [10] PATRÃO, MAURO. Entropy and its variational principle for non-compact metric spaces [J]. Ergodic Theory and Dynamical Systems, 2010, 30(5): 1529-1542 |
[1] | 洪育敏, 杨理平. 具有Banach代数的锥度量空间中的公共不动点定理[J]. 广东工业大学学报, 2021, 38(01): 75-81. |
[2] | 刘艳艳, 杨理平. 锥度量空间中c-距离的公共不动点定理[J]. 广东工业大学学报, 2019, 36(05): 43-47. |
[3] | 陈盼, 孔伟铭, 杨理平. 锥度量空间中四个自映射的公共不动点定理[J]. 广东工业大学学报, 2014, 31(4): 79-84. |
[4] | 范暖妮, 马东魁. 映射半群的拓扑压的一个刻画[J]. 广东工业大学学报, 2013, 30(2): 99-103. |
[5] | 孔伟铭,杨理平. 锥度量空间中扩张映象对的公共不动点定理[J]. 广东工业大学学报, 2013, 30(1): 76-80. |
|