广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (05): 62-67.doi: 10.12052/gdutxb.190097

• 综合研究 • 上一篇    下一篇

基于改进蝙蝠算法的配电网故障区段定位

许峻宁, 陈璟华, 荣泽成, 武宁   

  1. 广东工业大学 自动化学院,广东 广州 510006
  • 收稿日期:2019-07-17 出版日期:2020-09-17 发布日期:2020-09-17
  • 作者简介:许峻宁(1995-),男,硕士研究生,主要研究方向为电力系统安全运行与控制
  • 基金资助:
    中央财政支持地方高校发展专项资金资助项目([2016]202号)

Fault Section Location of Distribution Network Based on Improved Bat Algorithm

Xu Jun-ning, Chen Jing-hua, Rong Ze-cheng, Wu Ning   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-07-17 Online:2020-09-17 Published:2020-09-17

摘要: 提出一种将自适应理论、差分进化和蝙蝠优化算法结合的改进蝙蝠算法,解决电力系统配电网故障区段定位典型的含0-1离散约束条件及逻辑求值的最优化问题。将蝙蝠算法的全局寻优能力用于配电网故障区段的搜索和定位,在寻优过程中引入差分进化算法,并对算法的变异和交叉等操作进行自适应优化处理,解决传统蝙蝠算法容易陷入局部最优的缺陷。算例仿真结果表明,该算法能准确快速地定位配电网故障区段,并具有良好的容错性。

关键词: 配电网, 故障区段定位, 蝙蝠算法, 差分进化算法, 自适应理论

Abstract: An improved bat algorithm combining adaptive theory, differential evolution and bat optimization algorithm is proposed to solve the typical 0-1 discrete constraints and optimization problem of logic evaluation for fault section location in power distribution network. The global optimization ability of bat algorithm is used to iteratively optimize the fault section of distribution network. At the same time, aiming at the disadvantage that single algorithm is easy to fall into local optimum, differential evolution algorithm is introduced into the process of bat algorithm, and the mutation and crossover operation of the algorithm are adaptively optimized. The simulation results indicate that the algorithm can accurately and effectively locate the fault section of distribution network, and has better fault tolerance.

Key words: distribution network, fault section location, bat algorithm, differential evolution algorithm, adaptation theory

中图分类号: 

  • TM743
[1] 何正友. 配电网分析及应用[M]. 北京: 科学出版社, 2014: 1-10.
[2] 芦兴, 王瑞闯. 配电网故障定位方法研究[J]. 电网与清洁能源, 2013, 29(7): 26-30
LU X, WANG R C. Research on fault location method of distribution network [J]. Grid and Clean Energy, 2013, 29(7): 26-30
[3] 唐华, 王玮, 王英男, 等. 一种配电网故障区段定位的改进矩阵算法[J]. 科学技术与工程, 2014(11): 196-199
TANG H, WANG W, WANG Y N, et al. An improved matrix algorithm for fault section location in distribution network [J]. Science Technology and Engineering, 2014(11): 196-199
[4] 杜红卫, 孙雅明, 刘弘靖, 等. 基于遗传算法的配电网故障定位和隔离[J]. 电网技术, 2000, 24(5): 52-55
DU H W, SUN Y M, LIU H J, et al. Fault section diagnosis and isolation of distribution network based on genetic algorithm [J]. Grid Technology, 2000, 24(5): 52-55
[5] 孙雅明, 吕航. Petri网和冗余纠错技术结合的配电网故障区段定位新方法[J]. 中国电机工程学报, 2004, 24(10): 61-67
SUN Y M, LYU H. A new approach of the fault section locating for distribution system based on Petri nets in combination with redundant correcting technique [J]. Proceedings of the Chinese Journal of Electrical Engineering, 2004, 24(10): 61-67
[6] 刘文轩, 严凤, 田霖, 等. 基于LVQ神经网络的配电网故障定位方法[J]. 电力系统保护与控制, 2012, 40(5): 90-95
LIU W X, YAN F, TIAN L, et al. LVQ neural network approach for fault location of distribution network [J]. Power System Protection and Control, 2012, 40(5): 90-95
[7] 郭壮志, 吴杰康. 配电网故障区间定位的仿电磁学算法[J]. 中国电机工程学报, 2010, 30(13): 34-40
GUO Z Z, WU J K. Electromagnetism-like mechanism based fault section diagnosis for distribution network [J]. Proceedings of the Chinese Journal of Electrical Engineering, 2010, 30(13): 34-40
[8] 胡清, 张强. 基于改进二进制粒子群算法的配电网故障定位[J]. 南京工程学院学报(自然科学版), 2016(3): 77-81
HU Q, ZHANG Q. Fault location of distribution networks based on improved binary particle swarm optimization [J]. Journal of Nanjing Institute of Engineering, 2016(3): 77-81
[9] 邹玙琦, 李瑞. 基于最优个体蚁群算法的配电网故障定位研究[J]. 电气传动自动化, 2018, 40(1): 58-62
ZOU Y Q, LI R. Research on distribution network fault location based on optimal individual ant colony algorithm [J]. Electric Drive Automation, 2018, 40(1): 58-62
[10] 陈奎, 张云, 王洪寅, 等. 基于免疫算法的含分布式电源配电网的故障定位[J]. 电力系统保护与控制, 2017, 45(24): 57-62
CHEN K, ZHANG Y, WANG H Y, et al. Fault-section location of distribution network containing distributed generation based on immune algorithm [J]. Power System Protection and Control, 2017, 45(24): 57-62
[11] 陈辉, 周羽生. 基于改进和声算法的含DG配电网故障定位[J]. 电力科学与技术学报, 2018, 33(2): 123-128
CHEN H, ZHOU Y S. Fault location of distribution network with distributed generation based on an improved harmony algorithm [J]. Journal of Electric Power Science and Technology, 2018, 33(2): 123-128
[12] YANG X S. A new metaheuristic bat-inspired algorithm[C]//GONZALEZJ R. Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Berlin: Spring, 2010, 65-74.
[13] 卫志农, 何桦, 郑玉平, 等. 配电网故障区间定位的高级遗传算法[J]. 中国电机工程学报, 2002, 22(4): 127-130
WEI Z N, HE H, ZHENG Y P, et al. A refined genetic algorithm for the fault sections location [J]. Proceedings of the CSEE, 2002, 22(4): 127-130
[14] 郭壮志, 陈波, 刘灿萍, 等. 潜在等式约束的配电网遗传算法故障定位[J]. 现代电力, 2007, 24(3): 24-28
GUO Z Z, CHEN B, LIU C P, et al. Genetic algorithm fault location of distribution network with latent equality constraint [J]. Modern Electric Power, 2007, 24(3): 24-28
[15] 郭壮志, 陈波, 刘灿萍, 等. 基于遗传算法的配电网故障定位[J]. 电网技术, 2007, 24(11): 88-92
GUO Z Z, CHEN B, LIU C P, et al. Distribution network fault location based on genetic algorithm [J]. Power Grid Technology, 2007, 24(11): 88-92
[16] 付家才, 陆青松. 基于蝙蝠算法的配电网故障区间定位[J]. 电力系统保护与控制, 2015, 43(16): 100-105
FU J C, LU Q S. Fault sections location of distribution network based on bat algorithm [J]. Power System Protection and Control, 2015, 43(16): 100-105
[17] 柳岩妮, 公茂法, 王来河, 等. 基于混沌优化蝙蝠算法的含分布式电源配电网故障区段定位[J]. 电力科学与工程, 2016, 32(8): 11-14
LIU Y N, GONG M F, WANG L H, et al. Location of fault section of distributed power distribution network based on chaos optimization bat algorithm [J]. Electric Power Science and Engineering, 2016, 32(8): 11-14
[18] 陈璟华, 邱明晋, 唐俊杰, 等. 基于改进差分进化和粒子群混合算法的电力系统最优潮流计算[J]. 广东工业大学学报, 2017, 34(5): 24-26
CHEN J H, QIU M J, TANG J J, et al. A hybrid algorithm based on improved differential evolution and particle swarm optimization for power system optimal power flow calculation [J]. Journal of Guangdong University of Technology, 2017, 34(5): 24-26
[19] 肖辉辉, 段艳明. 基于DE算法改进的蝙蝠算法的研究及应用[J]. 计算机仿真, 2014, 31(1): 272-277
XIAO H H, DUAN Y M. Research and application of improved bat algorithm based on DE algorithm [J]. Computer Simulation, 2014, 31(1): 272-277
[1] 郑世明, 林泽鑫, 黄园芳, 李旺军, 彭显刚. 基于图模一体化技术的配电网可靠性评估[J]. 广东工业大学学报, 2022, 39(03): 63-69.
[2] 张兆轩, 陈璟华, 赵炳耀, 陈友鹏. 考虑集中充电站的电池换电站选址定容规划[J]. 广东工业大学学报, 2021, 38(05): 59-67.
[3] 荣泽成, 陈璟华, 郭壮志, 许俊宁, 陈友鹏. 基于非线性互补约束的含DG配电网故障区段定位方法[J]. 广东工业大学学报, 2020, 37(04): 51-58.
[4] 陈璟华, 邱明晋, 唐俊杰, 田明正, 谭耿锐. 基于改进差分进化和粒子群混合算法的电力系统最优潮流计算[J]. 广东工业大学学报, 2017, 34(05): 22-28.
[5] 许欢, 温洁嫦. 差分进化算法在物流配送路径优化中的应用[J]. 广东工业大学学报, 2013, 30(4): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!