广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (05): 87-93.doi: 10.12052/gdutxb.200048
唐超兰, 谢义
Tang Chao-lan, Xie Yi
摘要: 铝合金加工工艺参数的选择是影响铝合金零件加工效率和加工质量、降低制造成本、提高设备使用寿命的关键因素。以6061铝合金为研究对象,对铝合金铣削工艺参数多目标优化进行了研究。以主轴转速、进给速度、轴向进给量、径向进给量和刀具直径为实验因素,进行了五因素五水平铣削正交实验,采用遗传算法优化的反向传播神经网络预测模型建立铣削参数与表面粗糙度之间的非线性关系。在此基础上,建立了以材料去除率和加工表面粗糙度为优化目标的多目标铣削参数优化模型,使用基于NSGA-II算法开发的gamultiobj函数对优化模型进行求解。结果表明,优化后的6061铝合金高速铣削工艺参数范围为主轴转速12 000~13 000 r·min-1,径向进给量0.19~0.21 mm,进给速度1272~1300 mm·min-1,轴向进给量6~8 mm,刀具直径4 mm。
中图分类号:
[1] 于信伟, 冯明军, 王学惠. 高速铣削参数对铝合金零件表面粗糙度的影响[J]. 黑龙江科技学院学报, 2010, 20(2): 91-93 YU X W, FENG M J, WANG X H. Influence of high-speed milling parameters on aluminum alloy work-piece surface roughness [J]. Journal of Heilongjiang Institute of Science and Technology, 2010, 20(2): 91-93 [2] 王云霞, 漆小敏. 汽车6061铝合金材料切削加工理论及实验研究[J]. 机械强度, 2019, 41(6): 1345-1350 WANG Y X, QI X M. Theory and experimental research on cutting processing of automobile 6061 aluminum alloy materials [J]. Journal of Mechanical Strength, 2019, 41(6): 1345-1350 [3] 周志恒, 张超勇, 谢阳, 等. 数控车床切削参数的能量效率优化[J]. 计算机集成制造系统, 2015, 21(9): 2410-2418 ZHOU Z H, ZHANG C Y, XIE Y, et al. Cutting parameters optimization for processing energy and efficiency in CNC lathe [J]. Computer Integrated Manufacturing Systems, 2015, 21(9): 2410-2418 [4] 黄晓明, 孙杰. 高速铣削7050-T7451铝合金表面粗糙度研究[J]. 中国工程机械学报, 2014, 12(3): 248-251 HUANG X M, SUN J. Research on surface roughness of 7050-T7451 aluminum alloy by high speed milling [J]. Chinese Journal of Construction Machinery, 2014, 12(3): 248-251 [5] 丁涛. 6061铝合金铣削加工表面粗糙度研究[J]. 农业装备与车辆工程, 2018, 56(12): 60-62 DING T. Research on surface roughness of 6061 aluminum alloy by milling [J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(12): 60-62 [6] 伍文进, 徐中云, 严帅, 等. 基于正交试验的6061铝合金铣削工艺研究[J]. 机床与液压, 2018, 46(14): 27-30 WU W J, XU Z Y, YAN S, et al. Study of milling process for 6061 aluminum alloy based on orthogonal experiment [J]. Machine Tool & Hydraulics, 2018, 46(14): 27-30 [7] AJITH ARUL DANIEL S, PUGAZHENTHI R, KUMAR R. Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis [J]. Defence Technology, 2019, 15(4): 545-556 [8] 姚倡锋, 张定华, 黄新春, 等. TC11钛合金高速铣削的表面粗糙度与表面形貌研究[J]. 机械科学与技术, 2011, 30(9): 1573-1578 YAO C F, ZHANG D H, HUANG X C, et al. Exploring surface roughness and surface morphology of high-speed milling TC11 titanium alloy [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9): 1573-1578 [9] LI J, YANG X, REN C. Multi-objective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II [J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 941-953 [10] 王立新, 张程焱, 俎晓莉, 等. 切削参数对高强铝合金干切削加工表面形貌的影响[J]. 工具技术, 2019, 53(11): 29-33 WANG L X, ZHANG C Y, ZU X L, et al. Effects of cutting parameters on machined surface morphology of high strength aluminium alloy under dry cutting [J]. Tool Engineering, 2019, 53(11): 29-33 [11] 谢黎明, 张威, 靳岚. 6061铝合金高速铣削切削参数对表面粗糙度的影响分析[J]. 机械设计与制造工程, 2018, 47(3): 56-60 XIE L M, ZHANG W, JIN L. The analysis on the influence of cutting parameters to surface roughness in the high speed milling 6061 aluminum alloy [J]. Machine Design and Manufacturing Engineering, 2018, 47(3): 56-60 [12] 邓朝晖, 符亚辉, 万林林, 等. 面向绿色高效制造的铣削工艺参数多目标优化[J]. 中国机械工程, 2017, 28(19): 2365-2372 DENG C H, FU Y H, WANG L L, et al. Multi objective optimization of milling process parameters for green high-performance manufacturing [J]. China Mechanical Engineering, 2017, 28(19): 2365-2372 [13] 梁爽, 唐晓, 江磊, 等. GA-BP神经网络预测钛合金表面粗糙度[J]. 机械设计与制造, 2019(8): 265-268 LIANG S, TANG X, JIANG L, et al. GA-BP neural network optimized by genetic algorithm predict the surface roughness of titanium alloy [J]. Machinery Design & Manufacture, 2019(8): 265-268 [14] BANDAPALLI C, SUTARIA B M, BHATT D V. Experimental investigation and estimation of surface roughness using ANN, GMDH & MRA models in high speed micro end milling of titanium alloy (Grade-5) [J]. Materials Today Proceedings, 2017, 4(2): 1019-1028 [15] 李帆, 闫献国, 陈峙, 等. 基于遗传算法优化BP神经网络的YG8硬质合金耐磨性预测模型[J]. 金属热处理, 2019, 44(12): 244-248 LI F, YAN X G, CHEN Z, et al. Prediction model of wear resistance of YG8 cemented carbide based on BP neural network optimized by genetic algorithm [J]. Heat Treatment of Metals, 2019, 44(12): 244-248 [16] MIA M, DHAR N R. Prediction of surface roughness in hard turning under high pressure coolant using artificial neural network [J]. Measurement, 2016, 92: 464-474 [17] ZAIN A M, HARON H, SHARIF S. Prediction of surface roughness in the end milling machining using artificial neural network [J]. Expert Systems with Applications, 2010, 37(2): 1755-1768 [18] 郗伟杰, 李东辉. 基于遗传算法优化BP神经网络的接触网磨耗预测[J]. 电气化铁道, 2019, 30(S1): 47-49 XI W J, LI D H. BP neural network based genetic algorithm optimization for prediction of OCS wear [J]. Electric Railway, 2019, 30(S1): 47-49 [19] 段少军. 基于遗传算法的LVDT性能参数多目标优化[D]. 武汉: 武汉科技大学, 2016. |
[1] | 谢玲娜, 韩萍, 杜志云. 银耳多糖超声波提取工艺优化及抗BV2细胞炎症的作用研究[J]. 广东工业大学学报, 2021, 38(02): 94-98. |
[2] | 胡德卿, 熊锐, 吴坚, 谢火志, 潘浩坤. 基于滚流比的某汽油发动机进气道优化设计和研究[J]. 广东工业大学学报, 2019, 36(01): 87-92. |
[3] | 周怡璐, 王振友, 李叶紫, 李锋. MOEA/D聚合函数的二次泛化及其优化性能分析[J]. 广东工业大学学报, 2018, 35(04): 37-44. |
[4] | 唐俊杰, 陈璟华, 邱明晋. 基于动态模糊混沌粒子群算法的含电动汽车微电网多目标优化调度研究[J]. 广东工业大学学报, 2018, 35(03): 100-106. |
[5] | 黄美华, 温洁嫦, 何勇. 求解多目标背包问题的改进人工鱼群算法[J]. 广东工业大学学报, 2016, 33(05): 44-48. |
[6] | 李扬, 王玉. 塑料挤出机生产工艺参数调度优化专家系统[J]. 广东工业大学学报, 2015, 32(3): 73-78. |
[7] | 高鹰, 余琦, 刘外喜. 应用云模型和Favour排序的多目标优化算法[J]. 广东工业大学学报, 2014, 31(3): 14-20. |
[8] | 许欢, 温洁嫦. 差分进化算法在物流配送路径优化中的应用[J]. 广东工业大学学报, 2013, 30(4): 61-64. |
[9] | 谢桂芩,杨玉华,涂井先. 带有时间窗的虚拟场站接驳补货车辆路径问题[J]. 广东工业大学学报, 2013, 30(1): 61-67. |
[10] | 何凯龙,陈颖,莫松平,冯婧. 工艺参数对铜基Ni-P-PTFE化学复合镀的影响[J]. 广东工业大学学报, 2013, 30(1): 101-105. |
[11] | 谢桂芩, 涂井先. 分区域多目标进化算法在协同车辆路径问题中的应用[J]. 广东工业大学学报, 2011, 28(4): 38-44. |
[12] | 张金凤 , 陈蔚丽. 多目标进化算法在物流配送中心选址中的应用[J]. 广东工业大学学报, 2010, 27(4): 76-80. |
[13] | 刘玉兰;. 下层带扰动参数的二层多目标优化问题的灵敏度分析[J]. 广东工业大学学报, 2009, 26(2): 11-. |
[14] | 陈海燕; 李卫民; . 铜钎焊剂的成分优化与制备[J]. 广东工业大学学报, 2006, 23(1): 60-63. |
[15] | 刘勇健; 沈军; 张建龙; . 废泥浆固液分离的试验研究[J]. 广东工业大学学报, 2000, 17(2): 53-56. |
|