广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (06): 1-8.doi: 10.12052/gdutxb.200076
• • 下一篇
李振福1, 段伟1, 李肇坤2, 邓昭1
Li Zhen-fu1, Duan Wei1, Li Zhao-kun2, Deng Zhao1
摘要: 为探究“21世纪海上丝绸之路”船舶交通流规律,基于2018年“21世纪海上丝绸之路”AIS(Automatic Identification System,船舶自动识别系统)数据,利用时间序列模型分别对货船、油轮和货船-油轮这3种情形下的船舶交通流进行了研究。结果显示,船舶交通流变化规律可以用ARIMA模型(Auto-regressive Intergrated Moving Average Model,即差分自回归移动平均模型),拟合并预测;货船、油轮和货船-油轮这3种情形有相同的最优选择模型ARIMA(1,1,2)。“21世纪海上丝绸之路”船舶交通流可由前两个时间周期内的交通流数据拟合预测,并且ARIMA(1,1,2)模型对单一船型交通流的预测效果优于对混合船型交通流的预测。
中图分类号:
[1] 张桂梅, 李晓璇. 中国与“21世纪海上丝绸之路”西线国家贸易潜力研究[J]. 山东工商学院学报, 2019, 33(6): 22-35. ZHANG G M, LI X X. Research on the trade potential between China and the western line countries of the "The 21st-Century Maritime Silk Road" [J]. Journal of Shandong Technology and Business University, 2019, 33(6): 22-35. [2] 王凤婷, 田园, 程宝栋. 中国与“21世纪海上丝绸之路”沿线国家农产品出口贸易研究[J]. 国际经济合作, 2019(2): 80-90. WANG F T, TIAN Y, CHENG B D. Research on export trade of agricultural products between China and countries along the "21st Century Maritime Silk Road" [J]. Journal of International Economic Cooperation, 2019(2): 80-90. [3] 郑崇伟, 孙威, 黎鑫, 等. 经略21世纪海上丝路: 重要航线、节点及港口特征[J]. 海洋开发与管理, 2016, 33(1): 4-13. ZHENG C W, SUN W, LI X, et al. Strategy of the 21st Century Maritime Silk Road: on the important routes, crucial nodes and characteristics of ports [J]. Ocean Development and Management, 2016, 33(1): 4-13. [4] 郑崇伟, 高成志, 高悦. “21世纪海上丝绸之路”波浪能的气候特征及变化趋势[J]. 太阳能学报, 2019, 40(6): 1487-1493. ZHENG C W, GAO C Z, GAO Y. Climate feature and long term trend analysis of wave energy resource of 21st Century Maritime Silk Road [J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1487-1493. [5] 牟乃夏, 廖梦迪, 张恒才, 等. “海上丝绸之路”沿线重要港口区位优势度评估[J]. 地球信息科学学报, 2018, 20(5): 613-622. MOU N X, LIAO M D, ZHANG H C, et al. Evaluation on location advantages of the ports along the Maritime Silk Road [J]. Journal of Geo-Information Science, 2018, 20(5): 613-622. [6] 李振福, 李婉莹, 徐梦俏. 新海上丝绸之路集装箱海运网络中心性[J]. 中国航海, 2018, 41(3): 123-128. LI Z F, LI W Y, XU M Q. Centrality of Maritime Silk Road container shipping network [J]. Navigation of China, 2018, 41(3): 123-128. [7] 于安琪, 王诺. “21世纪海上丝绸之路”集装箱海运网络连通性分析[J]. 上海海事大学学报, 2019, 40(4): 72-77. YU A Q, WANG N. Connectivity analysis of container shipping network of “21st Century Maritime Silk Road” [J]. Journal of Shanghai Maritime University, 2019, 40(4): 72-77. [8] 朱小林, 陈昌定, 姚婉莹. 考虑物流绩效及规模效益的海上丝绸之路枢纽网络设计与研究[J]. 计算机应用与软件, 2018, 35(11): 66-73. ZHU X L, CHEN C D, YAO W Y. Design and study of Maritime Silk Road hub network considering logistics performance and scale benefits [J]. Computer Applications and Software, 2018, 35(11): 66-73. [9] 孟夏韵. “一带一路”倡议下中国文化在拉美的传播路径及其改善[J]. 江苏大学学报(社会科学版), 2019, 21(6): 27-35. MENG X Y. The transmission path and improvement of the spread of Chinese culture in Latin America under the "Belt and Road" initiative [J]. Journal of Jiangsu University(Social Science Edition), 2019, 21(6): 27-35. [10] 杨泽伟. 21世纪海上丝绸之路建设重要节点地区的法律问题研究[J]. 法学杂志, 2019, 40(8): 67-75. YANG Z W. On legal issues of the key connexion in the building the 21st-Century Maritime Silk Road [J]. Law Science Magazine, 2019, 40(8): 67-75. [11] 孙海泳. “一带一路”背景下中非海上互通的安全风险与防控[J]. 新视野, 2018(5): 35-40. SUN H Y. Security risks in China-Africa maritime exchange and its prevention and control under the background of "the Belt and Road" [J]. Expanding Horizons, 2018(5): 35-40. [12] 宫晓婞, 吕靖, 李辉. 海上丝绸之路关键海峡运河安全效率研究[J]. 运筹与管理, 2019, 28(3): 173-182. GONG X X, LYU J, LI H. Safety efficiency of strait canal on the Maritime Silk Road [J]. Operations Research and Management Science, 2019, 28(3): 173-182. [13] 俞洁, 杨成斌. 交通流理论发展分析[J]. 合肥工业大学学报(自然科学版), 2004(2): 163-167. YU J, YANG C B. A general review of the traffic flow theory [J]. Journal of Hefei University of Technology (Natural Science), 2004(2): 163-167. [14] 甘浪雄, 张磊, 邹早建, 等. 基于场方法的船舶交通流分析[J]. 上海交通大学学报, 2014, 48(4): 551-557. GAN L X, ZHANG L, ZOU Z J, et al. Analysis of vessel traffic flow based on field method [J]. Journal of Shanghai Jiaotong University, 2014, 48(4): 551-557. [15] 熊振南, 程俊康, 翁跃宗. 点统计法在船舶交通流分析中的应用[J]. 中国航海, 2009, 32(1): 64-67. XIONG Z N, CHENG J K, WENG Y Z. Application of point-statistic method in the analysis of vessel traffic flow [J]. Navigation of China, 2009, 32(1): 64-67. [16] 金兴赋, 付玉慧, 张连东. 基于AIS数据的成山头水域船舶交通流研究[J]. 大连海事大学学报, 2012, 38(1): 33-36. JIN X F, FU Y H, ZHANG L D. Research on vessel traffic flow at Chengshantou water area based on AIS data [J]. Journal of Dalian Maritime University, 2012, 38(1): 33-36. [17] 刘敬贤, 韩晓宝. 渤海海峡船舶流的调查与分析[J]. 船海工程, 2008(4): 95-98. LIU J X, HAN X B. Survey and analysis of vessel traffic flow in the Bohai strait [J]. Ship & Ocean Engineering, 2008(4): 95-98. [18] 文哲, 张培林, 袁子文. 枯水期长江中游船舶交通流特征分析[J]. 物流技术, 2018, 37(5): 80-84. WEN Z, ZHANG P L, YUAN Z W. Characteristics of ship traffic on middle reaches of Yangtze river in dry season [J]. Logistics Technology, 2018, 37(5): 80-84. [19] 惠子刚, 肖建兵. 基于FCM-ANFIS模型的船舶交通流预测[J]. 中国航海, 2018, 41(2): 73-76. HUI Z G, XIAO J B. Vessel traffic flow prediction based on FCM-ANFIS model [J]. Navigation of China, 2018, 41(2): 73-76. [20] 钮浩东, 黄洪琼. 基于FOA优化GRNN的船舶交通流预测模型[J]. 微型机与应用, 2016, 35(12): 81-83. NIU H D, HUANG H Q. Ship traffic flow prediction model based on FOA-GRNN algorithm [J]. Information Technology and Network Security, 2016, 35(12): 81-83. [21] 张晓雷, 黄洪琼. 基于优化的灰色马尔可夫模型对船舶流的预测[J]. 计算机技术与发展, 2018, 28(10): 101-104. ZHANG X L, HUANG H Q. Prediction of ship traffic flow based on optimized grey Markov prediction model [J]. Computer Technology and Development, 2018, 28(10): 101-104. [22] 肖进丽, 李晓磊. 基于集合经验模态分解和差分进化算法优化BP神经网络的船舶交通流预测[J]. 大连海事大学学报, 2018, 44(2): 9-14. XIAO J L, LI X L. Vessel traffic flow prediction method based on ensemble empirical mode decomposition and back propagation neural network optimized with differential evolution algorithm [J]. Journal of Dalian Maritime University, 2018, 44(2): 9-14. [23] 谢振东, 刘雪琴, 吴金成, 等. 公交IC卡数据客流预测模型研究[J]. 广东工业大学学报, 2018, 35(1): 16-22. XIE Z D, LIU X Q, WU J C, et al. A study of passenger flow prediction based on IC card data [J]. Journal of Guangdong University of Technology, 2018, 35(1): 16-22. [24] 谢振东, 何建兵, 何仕晔, 等. 基于IC卡数据的居民出行成本建模分析[J]. 广东工业大学学报, 2019, 36(2): 47-53. XIE Z D, HE J B, HE S Y, et al. Modeling and analysis of residents' travel cost based on IC card data [J]. Journal of Guangdong University of Technology, 2019, 36(2): 47-53. [25] YIP T L. A marine traffic flow model [J]. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 2013, 7(1). [26] 沈彭, 魏峰. ARIMA季节乘积模型在新疆地区细菌性痢疾发病率预测中的应用[J]. 重庆科技学院学报(自然科学版), 2019, 21(6): 99-104. SHEN P, WEI F. Application of multiple seasonal ARIMA model on forecasting incidence of bacillary dysentery in Xinjiang [J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2019, 21(6): 99-104. [27] 赵鹏, 李璐. 基于ARIMA模型的城市轨道交通进站量预测研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(1): 40-44. ZHAO P, LI L. Prediction of urban rail transit station inflows based on ARIMA model [J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(1): 40-44. [28] 耿献辉, 安宁. 基于ARIMA模型的梨果价格波动及市场行情预测[J]. 北方果树, 2020(2): 1-4. GENG X H, AN N. The price fluctuation and market forecast of pear based on ARIMA model [J]. Northern Fruits, 2020(2): 1-4. [29] 王兴川, 姚恩建, 刘莎莎. 基于AFC数据的大型活动期间城市轨道交通客流预测[J]. 北京交通大学学报, 2018, 42(1): 87-93. WANG X C, YAO E J, LIU S S. Urban rail transit passenger flow forecasting for large special event based on AFC data [J]. Journal of Beijing Jiaotong University, 2018, 42(1): 87-93. [30] 赵梦鸽, 李林. 基于ARIMA模型的工业生产指数预测分析[J]. 经济研究导刊, 2020(3): 30-36. ZHAO M G, LI L. Industrial production index forecast analysis based on ARIMA model [J]. Economic Research Guide, 2020(3): 30-36. |
No related articles found! |
|