广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (01): 13-20.doi: 10.12052/gdutxb.200106

• 可拓学与创新方法 • 上一篇    下一篇

可拓分析与决策的应用研究:以高校招生体系为例

高红, 郗常清, 刘巍   

  1. 大连海事大学 理学院,辽宁 大连 116026
  • 收稿日期:2020-08-24 出版日期:2021-01-25 发布日期:2020-12-01
  • 作者简介:高红(1976-),女,副教授,博士,主要研究方向为图论、统计学习算法等,E-mail:gaohong@dlmu.edu.cn
  • 基金资助:
    教育部产学合作协同育人项目(201902139012);大连海事大学教学改革项目(2020Y91)

Application of Extension Analysis and Decision: A Case Study of College Enrollment System

Gao Hong, Xi Chang-qing, Liu Wei   

  1. College of Science, Dalian Maritime University, Dalian 116026, China
  • Received:2020-08-24 Online:2021-01-25 Published:2020-12-01

摘要: 在我国不断发展的经济社会环境下, 高等教育的普及程度不断加大, 高考和硕士研究生入学考试是高校招考工作的重要内容。建立科学全面的客观定量评价体系和决策模型, 有助于高校招生体系的进一步完善。利用可拓学对高考和硕士研究生招生进行定量分析并提出了可以进一步完善的机制。对于高考, 从考生自身发展的角度, 通过建立关联函数, 计算改革前后的关联度, 定量分析高考改革对学生的影响。对于研究生招生考试, 利用可拓层次分析法和德尔菲法建立了招收调剂生的决策模型, 该模型可以指导对调剂生的择优录取工作。

关键词: 物元模型, 可拓层次分析, 关联函数, 高等教育

Abstract: In the continuously developing economic and social environment, the popularity of higher education is increasing. The college entrance examination and the postgraduate entrance examination are important in the work of the higher education entrance examination. The establishment of scientific, comprehensive and objective evaluation system and decision model will contribute to the further optimization and improvement of college admission system. Extenics is used to quantitatively analyze college entrance examination and postgraduate enrollment and some improvements are proposed. As for the college entrance examination, from the perspective of students’ development, the correlation function is established, the correlation before and after the reform calculated, and the impact on students and the promotion effect of the college entrance examination reform on the development of students quantitatively analyzed. As for the postgraduate entrance examination, using the extension analytic hierarchy process and Delphi method, a decision-making model is established for the admission of transfer students to guide the admission.

Key words: matter-element model, extension analytic hierarchy process, correlation function, higher education

中图分类号: 

  • TP182
[1] 贺腾飞, 寇福明. 我国高等教育人才培养理念七十年的创新与展望[J]. 当代教育科学, 2020(4): 7-12.
HE T F, KOU F M. 70 years' innovation and prospect of talent training concept in China's higher education [J]. Contemporary Education Sciences, 2020(4): 7-12.
[2] 鲍威, 金红昊. 新高考改革对大学新生学业适应的影响: 抑制还是增强?[J]. 华东师范大学学报(教育科学版), 2020(6): 20-33.
BAO W, JIN H H. The influence of the college entrance examination reform on freshman’s academic adaptation: inhibition or promotion? [J]. Journal of East China Normal University (Educational Sciences), 2020(6): 20-33.
[3] 姜柳, 陈培智, 沈霄菡, 等. 新高考改革落地的教育资源配置问题研究[J]. 数学建模及其应用, 2020, 9(2): 53-64.
JIANG L, CHEN P Z, SHEN X H, et al. Research on the allocation of educational resources in the reform of college entrance examination [J]. Mathematical Modeling and Its Application, 2020, 9(2): 53-64.
[4] 刘小艳, 黄静, 陈铁军, 等. 新形势下研究生招生信息化的思考与探索[J]. 中国教育信息化, 2020(13): 37-39.
LIU X Y, HUANG J, CHEN T J, et al. Thinking and exploration on the informatization of graduate enrollment in the new situation [J]. The Chinese Journal of ICT in Education, 2020(13): 37-39.
[5] 陶玉萍, 叶安发, 刘延卿. 加强高校研究生招生工作管理探析[J]. 辽宁工业大学学报(社会科学版), 2020, 22(3): 59-61.
TAO Y P, YE A F, LIU Y Q. Analysis on strengthening the management of postgraduate enrollment in universities [J]. Journal of Liaoning University of Technology (Social Science Edition), 2020, 22(3): 59-61.
[6] 罗洪川. 高校研究生招生计划分配及其优化策略初探[J]. 黑龙江科学, 2020, 11(7): 126-127.
LUO H C. On the distribution of graduate enrollment plan and its optimization strategy [J]. Heilongjiang Science, 2020, 11(7): 126-127.
[7] 杨春燕, 蔡文. 可拓学[M]. 北京: 科学出版社, 2014.
[8] 杨春燕. 可拓创新方法[M]. 北京: 科学出版社, 2017.
[9] 高红, 徐晓明, 刘巍. 可拓分类在港口与后方物流园区发展关系中的应用[J]. 数学的实践与认识, 2018, 48(8): 1-10.
GAO H, XU X M, LIU W. Application of Extension classification in the relationship of a port and its rear logistics parks [J]. Mathematics in Practice and Theory, 2018, 48(8): 1-10.
[10] 陈智斌, 余永权. 以层次结构形式实现可拓分类的研究[J]. 广东工业大学学报, 2005, 22(4): 124-128.
CHEN Z B, YU Y Q. Research on extension classification based on hierarchical structure [J]. Journal of Guangdong University of Technology, 2005, 22(4): 124-128.
[11] 杨春燕, 蔡文, 涂序彦. 可拓学的研究、应用与发展[J]. 系统科学与数学, 2016, 36(9): 1507-1512.
YANG C Y, CAI W, TU X Y. The research, application and development of Extenics [J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(9): 1507-1512.
[12] 张钊, 张韧志. 区间数型水环境质量综合评价云物元模型及其应用[J]. 数学的实践与认识, 2019, 49(8): 269-276.
ZHANG Z, ZHANG R Z. Cloud matter element model for comprehensive evaluation of water environment quality based on interval number and its application [J]. Mathematics in Practice and Theory, 2019, 49(8): 269-276.
[13] 高洁, 盛昭瀚. 可拓层次分析法研究[J]. 系统工程, 2002, 20(5): 6-11.
GAO J, SHENG Z H. Research on extension analytic hierarchy process [J]. Systems Engineering, 2002, 20(5): 6-11.
[14] MEESAPAWONG P, REZGUI Y, LI H J. Planning innovation orientation in public research and development organizations: using a combined Delphi and Analytic Hierarchy, Process approach [J]. Technological Forecasting & Social Change, 2014, 87(9): 245-256.
[15] BOUZON M, GOVINDAN K, RODRIGUEZ C M T, et al. Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP [J]. Resources, Conservation & Recycling, 2016, 108: 182-197.
[1] 李娜, 刘巍, 高红. 基于可拓突变级数法的经济增长综合评价研究[J]. 广东工业大学学报, 2019, 36(03): 8-15.
[2] 罗良维, 杨春燕. 基于基因可拓模块化设计的陶瓷物流包装设计研究[J]. 广东工业大学学报, 2015, 32(2): 11-16.
[3] 李晓琳,邱卫根. 可拓集合运算的矩阵表示[J]. 广东工业大学学报, 2012, 29(3): 23-27.
[4] 杨春燕,蔡文. 可拓集中关联函数的研究进展[J]. 广东工业大学学报, 2012, 29(2): 7-14.
[5] 王伟1,刘巍2. 不确定收益率下投资组合的可拓评价及变换[J]. 广东工业大学学报, 2012, 29(1): 83-87.
[6] 李桥兴; . 多元多维基元及高阶多元多维可拓集合构造[J]. 广东工业大学学报, 2009, 26(4): 84-87.
[7] 杨成英; 陈勇;. 准一维纳米线电子动力学的量子尺寸效应[J]. 广东工业大学学报, 2009, 26(2): 14-.
[8] 杨成英; 丁建文; . 碳纳米管电子动力学的管径和螺旋度相关性研究[J]. 广东工业大学学报, 2008, 25(4): 5-8.
[9] 吕丹; 吴孟达; 张学志; . 可拓集合与粗糙集合[J]. 广东工业大学学报, 2005, 22(4): 120-123.
[10] 魏辉; 余永权; . 可拓检测的物元模型及其实现[J]. 广东工业大学学报, 2001, 18(1): 17-20.
[11] 胡宝清; 何娟娟; . 区间论域上的区间可拓集及其关联函数[J]. 广东工业大学学报, 2001, 18(1): 48-54.
[12] 刘波; . 经济增长的物元模型[J]. 广东工业大学学报, 2001, 18(1): 80-83.
[13] 胡宝清; 王孝礼; 何娟娟; . 区间上的可拓集及其关联函数[J]. 广东工业大学学报, 2000, 17(2): 101-104.
[14] 党耀国; 梁保松; 叶耀军; . 聚类分析中关联函数的构造[J]. 广东工业大学学报, 1998, 15(2): 123-126.
[15] 杨春燕; 何斌; . 系统故障的可拓诊断方法[J]. 广东工业大学学报, 1998, 15(1): 100-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!