广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 1-8.doi: 10.12052/gdutxb.200173

• •    下一篇

融合语义结构的注意力文本摘要模型

滕少华, 董谱, 张巍   

  1. 广东工业大学 计算机学院,广东 广州 510006
  • 收稿日期:2020-12-17 出版日期:2021-05-10 发布日期:2021-03-12
  • 通信作者: 张巍(1964-),女,副教授,主要研究方向为网络安全、数据挖掘、协同计算、模式识别,E-mail:weizhang@gdut.edu.cn E-mail:weizhang@gdut.edu.cn
  • 作者简介:滕少华(1962-),男,教授,博士,主要研究方向为数据挖掘、网络安全、协同计算、模式识别
  • 基金资助:
    国家自然科学基金资助项目(61972102);广东省重点领域研发计划项目(2020B010166006);广东省教育厅项目(粤教高函〔2018〕 179号,粤教高函〔2018〕 1号);广州市科技计划项目(201903010107,201802030011,201802010026,201802010042,201604046017)

An Attention Text Summarization Model Based on Syntactic Structure Fusion

Teng Shao-hua, Dong Pu, Zhang Wei   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-12-17 Online:2021-05-10 Published:2021-03-12

摘要: 传统基于序列的文本摘要生成模型未考虑词的上下文语义信息, 导致生成的文本摘要准确性不高, 也不符合人类的语言习惯。本文提出了一种基于文本语义结构的文本摘要生成模型(Structure Based Attention Sequence to Sequence Model, SBA), 结合注意力机制的序列到序列生成模型, 引入文本的句法结构信息, 使得注意力结构得到的上下文向量同时包含文本语义信息与句法结构信息, 获得生成的文本摘要。最后, 基于Gigaword数据集的实验结果表明, 提出的方法能有效地提高生成摘要的准确性以及可读性。

关键词: 文本摘要, 序列到序列模型, 注意力机制, 语义结构

Abstract: The traditional text summarization generation model based on sequence does not consider the context semantic information of words, which leads to the low accuracy of the generated text summary and does not conform to the human language habits. In view of this inadequacy, a structure-based attention sequence to sequence model (SBA) is proposed, which combines the sequence to sequence generation model of attention mechanism and introduces the syntactic structure information of the text, so that the context vector obtained by the attention structure contains both the semantic information and the syntactic structure information of the text, so as to obtain the generated text abstract. The experimental results based on Gigaword dataset show that the proposed method can effectively improve the accuracy and readability of the generated summary.

Key words: text summarization, sequence to sequence model, attention mechanism, syntactic structure

中图分类号: 

  • TP391
[1] GAMBHIR M, GUPTA V. Recent automatic text summarization techniques: a survey [J]. Artificial Intelligence Review, 2017, 47(1): 1-66.
[2] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems. Montereal: MIT Press, 2014: 3104-3112.
[3] ELMAN J L. Finding structure in time [J]. Cognitive Science, 1990, 14(2): 179-211.
[4] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[5] RUSH A M, CHOPRA S, WESTON J. A neural attention model for abstractive sentence summarization[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: ACL, 2015: 379-389.
[6] CHOPRA S, AULI M, RUSH A M. Abstractive sentence summarization with attentive recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: ACL, 2016: 93-98.
[7] NALLAPATI R, ZHOU B, DOS SANTOS C, et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Berlin: CoNLL, 2016: 280-290.
[8] GULCEHRE C, AHN S, NALLAPATI R, et al. Pointing the unknown words[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 140-149.
[9] GU J, LU Z, LI H, et al. Incorporating copying mechanism in sequence-to-sequence learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 1631-1640.
[10] SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 1073-1083.
[11] LIU L, LU Y, YANG M, et al. Generative adversarial network for abstractive text summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 8109-8110.
[12] 张敏, 曾碧卿, 韩旭丽, 等. DAPC: 结合双注意力和指针覆盖的文本摘要模型[J]. 计算机工程与应用, 2020, 56(8): 149-157.
ZHANG M, ZENG B Q, HAN X L, et al. DAPC: dual attention and pointer-coverage network based summarization model [J]. Computer Engineering and Applications, 2020, 56(8): 149-157.
[13] 党宏社, 陶亚凡, 张选德. 基于混合注意力与强化学习的文本摘要生成[J]. 计算机工程与应用, 2020, 56(1): 185-190.
DANG H S, TAO Y F, ZHANG X D. Abstractive summarization model based on mixture attention and reinforcement learning [J]. Computer Engineering and Applications, 2020, 56(1): 185-190.
[14] LI J, XIONG D, TU Z, et al. Modeling source syntax for neural machine translation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vanconver: ACL, 2017: 688-697.
[15] CAO Z, WEI F, LI W, et al. Faithful to the original: fact aware neural abstractive summarization[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 4781-4791.
[16] 谭有新, 滕少华. 短文本特征的组合加权方法[J]. 广东工业大学学报, 2020, 37(5): 51-61.
TAN Y X, TENG S H. Combined Weighting Method for Short Text Features [J]. Journal of Guangdong University of Technology, 2020, 37(5): 51-61.
[17] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//Advances in Neural Information Processing Systems. Montereal: MIT Press, 2014: 1-9.
[18] LIU R, HU J, WEI W, et al. Structural embedding of syntactic trees for machine comprehension[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017: 815-824.
[19] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016: 55-60.
[20] TAN J, WAN X, XIAO J. Abstractive document summarization with a graph-based attentional neural model[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Voncouver: ACL, 2017: 1171-1181.
[21] LIN C Y. Rouge: a package for automatic evaluation of summaries[C]//Text Summarization Branches Out. Barcelona: ACL, 2004: 74-81.
[22] KINGMA D P, BA J A. A method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations. San Diego: ICLR, 2015: 1-15.
[23] LI P, LAM W, BING L, et al. Deep recurrent generative decoder for abstractive text summarization[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017: 2091-2100.
[1] 吴俊贤, 何元烈. 基于通道注意力的自监督深度估计方法[J]. 广东工业大学学报, 2023, 40(02): 22-29.
[2] 刘洪伟, 林伟振, 温展明, 陈燕君, 易闽琦. 基于MABM的消费者情感倾向识别模型——以电影评论为例[J]. 广东工业大学学报, 2022, 39(06): 1-9.
[3] 梁观术, 曹江中, 戴青云, 黄云飞. 一种基于注意力机制的无监督商标检索方法[J]. 广东工业大学学报, 2020, 37(06): 41-49.
[4] 曾碧卿, 韩旭丽, 王盛玉, 徐如阳, 周武. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报, 2019, 36(04): 10-17.
[5] 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(04): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!