广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 29-35.doi: 10.12052/gdutxb.200153

• • 上一篇    下一篇

一种轻量级的高光谱遥感图像分类方法

马少鹏, 梁路, 滕少华   

  1. 广东工业大学 计算机学院,广东 广州 510006
  • 收稿日期:2020-11-23 出版日期:2021-05-10 发布日期:2021-03-12
  • 通信作者: 梁路(1980-),女,副教授,博士,主要研究方向为协同计算、数据挖掘、机器学习,E-mail:lianglu@gdut.edu.cn E-mail:lianglu@gdut.edu.cn
  • 作者简介:马少鹏(1996-),男,硕士研究生,主要研究方向为机器学习和图像处理
  • 基金资助:
    国家自然科学基金资助项目(61972102,61603100)

A Lightweight Hyperspectral Remote Sensing Image Classification Method

Ma Shao-peng, Liang Lu, Teng Shao-hua   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-11-23 Online:2021-05-10 Published:2021-03-12

摘要: 智慧农业已成为当今世界现代农业发展的大趋势, 其中低空无人机遥感图像分析是现代精准农业的重点研究方向, 它通过对无人机拍摄的高光谱遥感图像进行学习, 来指导无人机进行精准作业。然而, 中小型农场在发展智慧农场的过程中存在设备资源不足的弊端, 因此本文提出了一种基于卷积神经网络的轻量级高光谱遥感图像分类方法, 旨在保证较高分类精度的同时降低模型训练成本, 从而帮助中小型农场避免更换昂贵的高性能设备, 降低运营成本。本文方法使用主成分分析、数据扩增等数据预处理方法对高光谱遥感图像进行降维以及样本扩充, 引入空谱联合特征提高分类精度, 并对卷积神经网络结构进行优化加速了网络的训练过程。最后, 通过在3个中小规模的基准数据集上进行实验, 并与一些经典的传统分类方法以及深度学习方法进行对比, 结果表明本方法能够保证较好的分类效果, 同时减少网络训练的成本。

关键词: 智慧农业, 轻量级, 高光谱遥感, 卷积神经网络

Abstract: Intelligent agriculture has become a major trend in the development of modern agriculture. Low-altitude UAV remote sensing image analysis is the key point in precision agriculture, which guides UAV to carry out precise job by studying on hyperspectral remote sensing images taken by UAV. However, small and medium-sized farms have the disadvantage of insufficient computational resource. To deal with the problems, a classification method based on lightweight Convolutional Neural Networks (CNN) is proposed. This method aims to reduce the training cost and maintain an acceptable classification accuracy, so as to help farms avoid replacing expensive high-performance equipment. PCA is used to reduce the image spectral dimension and some data augmentation methods are used to enlarge the dataset. The CNN structure is optimized to accelerate the training process and the model used to extract Spectral-Spatial feature to improve classification accuracy. Experiments are conducted on three benchmark datasets, which shows that our lightweight CNN model can guarantee a satisfying accuracy while having a lower training cost compared with both traditional methods and deep learning method.

Key words: intelligent agriculture, lightweight, hyperspectral remote sensing, convolutional neural network

中图分类号: 

  • TP751
[1] 何友铸, 张振乾, 官春云. 高光谱遥感技术在精细农业监测上的应用及展望[J]. 作物研究, 2015, 29(1): 96-100.
HE Y Z, ZHANG Z Q, GUAN C Y. Application and prospect of hyperspectral remote sensing technology in precision agriculture monitoring [J]. Crop Research, 2015, 29(1): 96-100.
[2] 苗荣慧, 黄锋华, 杨华, 等. 基于空谱一体化的农田高光谱图像分类[J]. 江苏农业学报, 2018, 34(4): 818-824.
MIAO R H, HUANG F H, YANG H, et al. Farmland classification of hyperspectral image based on spatial-spectral integration method [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 818-824.
[3] 邓小玲, 曾国亮, 朱梓豪, 等. 基于无人机高光谱遥感的柑橘患病植株分类与特征波段提取[J]. 华南农业大学学报, 2020, 41(6): 100-108.
DENG X L, ZENG G L, ZHU Z H, et al. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing [J]. Journal of South China Agricultural University, 2020, 41(6): 100-108.
[4] 黄云, 唐林波, 李震, 等. 采用深度学习的遥感图像花生种植区域分类技术研究[J]. 信号处理, 2019, 35(4): 617-622.
HUANG Y, TANG L B, LI Z, et al. Research on peanut planting area classification technology using remote sensing image based deep learning [J]. Journal of Signal Processing, 2019, 35(4): 617-622.
[5] 张丰, 熊桢, 寇宁. 高光谱遥感数据用于水稻精细分类研究[J]. 武汉理工大学学报, 2002, 24(10): 36-39.
ZHANG F, XIONG Z, KOU N. Airborne hyperspectral remote sensing image data is used for rice precise classification [J]. Journal of Wuhan University of technology, 2002, 24(10): 36-39.
[6] HAM J, CHEN Y, CRAWFORD M M, et al. Investigation of the random forest framework for classification of hyperspectral data [J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(3): 492-501.
[7] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
[8] QIAN Y, YE M, ZHOU J. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture Features [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2276-2291.
[9] 张晓慧, 郝润芳, 李廷鱼. 基于低秩稀疏矩阵分解和稀疏字典表达的高光谱异常目标检测[J]. 激光与光电子学进展, 2019, 56(4): 234-240.
ZHANG X H, HAO R F, LI T Y. Hyperspectral abnormal target detection based on low rank and sparse matrix decomposition sparse representation [J]. Laser & Optoelectronics Progress, 2019, 56(4): 234-240.
[10] SHEN L, JIA S. Three-dimensional gabor wavelets for pixel-based hyperspectral imagery classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 5039-5046.
[11] CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107.
[12] 高鑫, 欧阳宁, 袁华. 基于快速去噪和深度信念网络的高光谱图像分类方法[J]. 桂林电子科技大学学报, 2016, 36(6): 469-476.
GAO X, OU Y N, YUAN H. A hyperspectral image classification method based on fast denoising and deep belief network [J]. Journal of Guilin University of Electronic Science and Technology, 2016, 36(6): 469-476.
[13] WEI H, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification [J]. Journal of Sensors, 2015, 2015: 1-12.
[14] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.
[15] YING L, ZHANG H, QIANG S. Spectral-Spatial classification of hyperspectral imagery with 3D convolutional neural network [J]. Remote Sensing, 2017, 9(1): 67-88.
[16] 李竺强, 朱瑞飞, 高放, 等. 三维卷积神经网络模型联合条件随机场优化的高光谱遥感影像分类[J]. 光学学报, 2018, 38(8): 404-413.
LI Z Q, ZHU R F, GAO F, et al. Hyperspectral remote sensing image classification based on three dimensional convolution neural network combined with conditional random field optimization [J]. Acta Optica Sinica, 2018, 38(8): 404-413.
[17] CAO X, ZHOU F, XU L, et al. Hyperspectral image classification with markov random fields and a convolutional neural network [J]. IEEE Transactions on Image Processing, 2018, 27(5): 2354-2367.
[18] LI T, LENG J, KONG L, et al. DCNR: deep cube CNN with random forest for hyper-spectral image classification [J]. Multimedia Tools and Applications, 2019, 78(3): 3411-3433.
[19] HERVÉ A, WILLIAMS L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459.
[20] YU S, JIA S, XU C. Convolutional neural networks for hyperspectral image classification [J]. Neurocomputing, 2017, 219(Jan. 5): 88-98.
[21] SÁIZ-ABAJO M J, MEVIK B H, SEGTNAN V H, et al. Ensemble methods and data augmentation by noise addition applied to the analysis of spectroscopic data [J]. Analytica Chimica Acta, 2005, 533(2): 147-159.
[22] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305.
ZHANG H, WANG K F, WANG F Y. Advances and perspectives on applications of deep learning in visual object detection [J]. Acta Automatica Sinica, 2017, 43(8): 1289-1305.
[23] 姜枫, 顾庆, 郝慧珍, 等. 基于内容的图像分割方法综述[J]. 软件学报, 2017, 28(1): 160-183.
JIANG F, GU Q, HAO H Z, et al. Survey on content-based image segmentation methods [J]. Journal of Software, 2017, 28(1): 160-183.
[24] 申小敏, 李保俊, 孙旭, 等. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(6): 77-84.
SHEN X M, LI B J, SUN X, et al. Large scale face clustering based on convolutional neural network [J]. Journal of Guangdong University of Technology, 2016, 33(6): 77-84.
[25] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France: ICML, 2015, 448-456.
[26] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[27] CAO X, XU L, MENG D, et al. Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification [J]. Neurocomputing, 2017, 226(Feb. 22): 90-100.
[28] HAUT J M, PAOLETTI M E, PLAZA J, et al. Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6440-6461.
[29] ZHANG H, LI Y, ZHANG Y, et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network [J]. Remote Sensing Letters, 2017, 8(5): 438-447.
[30] ZHAO W, LI S, LI A, et al. Hyperspectral images classification with convolutional neural network and textural feature using limited training samples [J]. Remote Sensing Letters, 2019, 10(5): 449-458.
[1] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[2] 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8.
[3] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58.
[4] 夏皓, 蔡念, 王平, 王晗. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(06): 26-31.
[5] 战荫伟, 朱百万, 杨卓. 车辆颜色和型号识别算法研究与应用[J]. 广东工业大学学报, 2020, 37(04): 9-14.
[6] 曾碧卿, 韩旭丽, 王盛玉, 徐如阳, 周武. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报, 2019, 36(04): 10-17.
[7] 杨孟军, 苏成悦, 陈静, 张洁鑫. 基于卷积神经网络的视觉闭环检测研究[J]. 广东工业大学学报, 2018, 35(05): 31-37.
[8] 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26.
[9] 申小敏, 李保俊, 孙旭, 徐维超. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(06): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!