广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 91-96.doi: 10.12052/gdutxb.200152
魏德宏1, 崔家武2
Wei De-hong1, Cui Jia-wu2
摘要: 以广东部分山地丘陵为研究区域, 分析了数字高程模型AW3D30、SRTM3 V4.1和ASTER GDEM V3的高程精度。利用车载动态PPP技术对沿广州、惠州、韶关、清远约730 km的线路进行了数据采集, 并由CSRS-PPP定位服务系统解算得到动态点的WGS84坐标, 再通过重力场模型EIGEN-6C4将动态点的大地高转换为正常高, 最后对3种数字高程模型进行高程检核。结果表明: AW3D30、SRTM3 V4.1和ASTER GDEM V3的平均误差分别为0.55、0.17、1.59 m, 均方根误差分别为3.78、5.84、8.88 m。3种数字高程模型的平均误差在不同海拔区间差异明显, 其中AW3D30在不同海拔区间的平均误差振幅相对较小, 在2.18 m以内; SRTM3 V4.1的平均误差与海拔为负相关关系, 平均误差随着海拔的升高由正值逐渐转为负值; ASTER GDEM V3的平均误差在(0 m, 250 m]海拔区间为2 m左右, 在(250 m, 800 m]区间为-2.28 m。AW3D30的均方根误差与标准差整体上随着海拔的升高而减小, SRTM3 V4.1随着海拔的升高而增大, ASTER GDEM V3无显著规律, 在(100 m, 250 m]区间优于7.69 m, 在其余区间优于9.86 m。
中图分类号:
[1] 汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014, 69(9): 1305-1325. TANG G A. Progress of DEM and digital terrain analysis in China [J]. Acta Geographica Sinica, 2014, 69(9): 1305-1325. [2] ULLAH S, FAROOQ M, SARWAR T, et al. Flood modeling and simulations using hydrodynamic model and ASTER DEM—a case study of Kalpani River [J]. Arabian Journal of Geosciences, 2016, 9(6): 439(page1-11). [3] 闵柯. 全球数字高程模型数据在国外铁路勘测设计中的应用[J]. 铁道勘察, 2019, 45(3): 16-19. MIN K. Analysis of application of global digital elevation model data to foreign railway survey and design [J]. Railway Investigation and Surveying, 2019, 45(3): 16-19. [4] 杨海龙. 利用数字摄影测量技术快速更新机载激光雷达DEM的方法研究[J]. 经纬天地, 2019(3): 27-31. YANG H L. Research method of rapidly updating airborne LiDAR DEM using digital photogrammetry technology [J]. Survey World, 2019(3): 27-31. [5] 万杰, 廖静娟, 许涛, 等. 基于ICESat/GLAS高度计数据的SRTM数据精度评估——以青藏高原地区为例[J]. 国土资源遥感, 2015, 27(1): 100-105. WAN J, LIAO J J, XU T, et al. Accuracy evaluation of SRTM data based on ICESat / GLAS altimeter data: a case study in the Tibetan Plateau [J]. Remote Sensing for Land & Resources, 2015, 27(1): 100-105. [6] ZHAO S, CHENG W, ZHOU C, et al. Accuracy assessment of the ASTER GDEM and SRTM3 DEM: an example in the Loess Plateau and North China Plain of China [J]. International Journal of Remote Sensing, 2011, 32(23): 8081-8093. [7] 于子钧, 刘斌, 姜琦刚, 等. 基于RTK的高程数据对比分析[J]. 世界地质, 2019, 38(2): 549-555. YU Z J, LIU B, JIANG Q G, et al. Comparison and analysis of elevation data based on RTK [J]. Global Geology, 2019, 38(2): 549-555. [8] 李征航, 黄劲松. GPS测量与数据处理[M]. 武汉: 武汉大学出版社, 2009. [9] HIRT C. Efficient and accurate high-degree spherical harmonic synthesis of gravity field Functionals at the Earth’s surface using the gradient approach [J]. Journal of Geodesy, 2012, 86(9): 729-744. [10] 袁小棋, 李国元, 高小明, 等. AW3D 30 m DSM数据质量分析及部分典型区域精度验证[J]. 测绘与空间地理信息, 2018, 41(4): 98-101. YUAN X Q, LI G Y, GAO X M, et al. Evaluation of AW3D 30 m DSM data elevation quality and precision validation of typical region [J]. Geomatics & Spatial Information Technology, 2018, 41(4): 98-101. [11] RODRIGUEZ E, MORRIS C S, BELZ J E. A global assessment of the SRTM performance [J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(3): 249-260. [12] 李鹏, 李振洪, 施闯, 等. 中国地区30 m分辨率SRTM质量评估[J]. 测绘通报, 2016(9): 24-28. LI P, LI Z H, SHI C, et al. Quality evaluation of 1 arc second version SRTM DEM in China [J]. Bulletin of Surveying and Mapping, 2016(9): 24-28. [13] 崔家武, 张兴福, 王峰, 等. GNSS精密单点定位成果的框架与历元转换方法[J]. 大地测量与地球动力学, 2018, 38(2): 172-175. CUI J W, ZHANG X F, WANG F, et al. Method research on reference frame and epoch transformation of GNSS precise point positioning Result [J]. Journal of Geodesy and Geodynamics, 2018, 38(2): 172-175. [14] 许耿然, 周建营, 朱紫阳. 广东地区最优地球重力场模型的选择及精度分析[J]. 大地测量与地球动力学, 2013, 33(5): 25-28. XU G R, ZHOU J Y, ZHU Z Y. Choice and accuracy analysis of optimal earth gravity field model in Guangdong region [J]. Journal of Geodesy and Geodynamics, 2013, 33(5): 25-28. [15] 武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(8): 1108-1115. WU W J, ZHANG S F, ZHAO S M. Analysis and comparison of SRTM1 DEM and ASTER GDEM V2 data [J]. Journal of Geo-information Science, 2017, 19(8): 1108-1115. |
[1] | 陈文彬, 王华, 吴希文. 1"与3"SRTM DEM在珠江三角洲地区InSAR形变监测中的应用效果比较[J]. 广东工业大学学报, 2018, 35(02): 41-45. |
|