广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (05): 75-81,118.doi: 10.12052/gdutxb.200129

• • 上一篇    下一篇

任意荷载作用下桩撑路堤中加筋体的变形和拉力计算

余艳芳, 史宏彦   

  1. 广东工业大学 土木与交通工程学院,广东 广州 510006
  • 收稿日期:2020-09-30 出版日期:2021-09-10 发布日期:2021-07-13
  • 通信作者: 史宏彦(1962–),男,教授,主要研究方向为岩土本构理论、深基坑工程及软土地基的数值模拟与反演方法,E-mail:shhy@163.com E-mail:shhy@163.com
  • 作者简介:余艳芳(1995–),女,硕士研究生,主要研究方向为桩撑路堤中加筋体的变形和拉力计算

Determination of Deformation and Tension of Geosynthetic Reinforcement in Piled Embankments under Arbitrarily Distributed Loads

Yu Yan-fang, Shi Hong-yan   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-09-30 Online:2021-09-10 Published:2021-07-13

摘要: 确定加筋体的变形和拉力是桩撑式路堤设计中的一个重要内容, 但目前的方法大多都做了一些简化, 如加筋体内的拉力是均匀的以及变形后的加筋体是圆弧或抛物线等。本文针对任意荷载作用下的平面加筋体, 推导出了相应的平衡方程, 并通过分析这些平衡方程后发现, 仅当加筋体表面光滑并且作用在加筋体表面的法向应力为均匀分布时, 加筋体内的拉力才是均匀的, 变形后的加筋体也才是圆弧。此外, 由于边界条件的不完备, 仅仅利用平衡方程不可能确定出加筋体的变形和拉力。基于以上分析, 提出了一种结合加筋体平衡条件与变形相容条件(即利用加筋体的平衡方程求出的加筋体长度应当与加筋体原始长度及拉力产生的长度之和相同)确定加筋体变形和拉力的简单数值解法。文中不同条件下的4个算例验证了该方法的合理性和可行性。

关键词: 任意荷载, 桩撑路堤, 加筋体, 变形, 拉力, 数值方法

Abstract: It is an important part to determine the deformation and tensile force of geosynthetic reinforcement (GR) in the design of piled embankments, but some simplifications such as the uniform tension and a circular arc or quadratic parabola shape of the deformed GR have been used in the current methods. Under plain strain condition, the equilibrium equations of GR are derived under arbitrarily distributed loads, and it is found that the deformed GR has a circular shape and the uniform tension only if the friction acting on the GR is ignored and the normal load is in uniform distribution. Furthermore, the deformation and tension of GR can't be determined only by using the equilibrium equations due to the imperfection of their boundary conditions. A simple numerical method to determine the deformation and tensile force of GR is presented on the basis of the combination of the equilibrium equations with the deformation consistency (the arc length obtained by the equilibrium equations is equal to that by the tensile force plus its initial length) of GR. The rationality and practicability are validated by the four examples.

Key words: arbitrarily distributed loads, piled embankments, geosynthetic reinforcement, deformation, tensile force, numerical method

中图分类号: 

  • TU431
[1] FILZ G M, SLOAN J A. Load distribution on geosynthetic reinforcement in column-supported embankments[C]//Stability and Performance of Slopes and Embankments. Reston: ASCE, 2013: 1822-1830.
[2] HELLO B L, VILLARD P. Embankments reinforced by piled and geosynthetics-numerical and experimental studies dealing with the transfer of load on the soil embankment [J]. Engineering Geology, 2009, 106: 78-91.
[3] NAUGHTON P J, KEMPTON G T. Comparison of analytical and numerical analysis design methods for piled embankments[C]//ASCE Geo-Institute and IFAI Geosynthetic Institute. Austin: ASCE, 2005: 1-10.
[4] VAN EEKELEN S J M, BEUIJEN A. Dutch research on basal reinforced piled embankments[C]//Geo-Congress2013. California: ASCE, 2013: 1838-1847.
[5] VAN EEKELEN S J M, BEZUIJEN A, VON TOL A F. An analytical model for arching in Piled embankments [J]. Geotextiles and Geomembranes, 2013, 39: 78-102.
[6] 郑俊杰, 张军, 马强, 等. 路桥过渡段桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2012, 34(2): 355-362.
ZHENG J J, ZHANG J, MA Q, et al. Experimental investigation of geogrid-reinforced and pile-supported embankment at bridge approach [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 355-362.
[7] CHEN Y M, CAO W P, CHEN R P. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments [J]. Geotextiles and Geomembranes, 2008, 26: 164-174.
[8] 陈福全, 李阿池. 桩承式加筋路堤的改进设计方法研究[J]. 岩土工程学报, 2007, 29(12): 1804-1808.
CHEN F Q, LI A C. Improved design method of geosynthetic reinforced pile supported embankments on soft soil [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1804-1808.
[9] 曹卫平, 陈仁朋, 陈云敏. 桩承式加筋路堤土拱效应试验研究[J]. 岩土工程学报, 2007, 29(3): 436-441.
CAO W P, CHEN R P, CHEN Y M. Experimental investigation on soil arching in piled reinforced embankments [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441.
[10] 费康, 刘汉龙. 桩承式加筋路堤的现场试验及数值分析[J]. 岩土力学, 2009, 30(4): 1004-1012.
FEI K, LIU H L. Field test study and numerical analysis of a geogrid-reinforced and pile-supported embankment [J]. Rock and Soil Mechanics, 2009, 30(4): 1004-1012.
[11] TSIATAS G C, KATSIKADELIS J T. Nonlinear analysis of elastic space cable-supported membranes [J]. Engineering Analysis with Boundary Elements, 2011, 35: 1149-1158.
[12] ABUSHARAR S W, ZHENG J J, CHEN B G, et al. A simplified method for analysis of a piled embankment reinforced with geosynthetics [J]. Geotextiles and Geomembranes, 2009, 27: 39-52.
[13] LOW B K, TANG S K, CHOA V. Arching in Piled embankments [J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938.
[14] JONES C, LAWSON C R. Geotextile reinforced piled embankments[C]//Proc. 4th Int. Conf. on Geotextiles. Geomembranes and Related Products. Rotterdam: Balkema, 1990, 155-160.
[15] 强小俊, 赵有明, 胡荣华. 桩网结构支承路堤土拱效应改进算法[J]. 中国铁道科学, 2009, 30(4): 7-11.
QIANG X J, ZHANG Y M, HU R H. Improved algorithm for the soil arching effect of pile-net supported embankments [J]. China Railway Science, 2009, 30(4): 7-11.
[16] 庄妍, 王康宇, 刘汉龙. 桩承式路堤中加筋体工作机理研究[J]. 岩土工程学报, 2013, 35(S1): 294-299.
ZHUANG Y, WANG K Y, LIU H L. Reinforcement performance of piled embankments [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 294-299.
[1] 郭晓彤, 王华, 吴希文, 柏俊, 戴泉. 基于WebGIS的形变监测成果管理与展示系统[J]. 广东工业大学学报, 2020, 37(06): 50-55.
[2] 王晓锋, 何小琦, 尧彬. PBGA封装回流焊翘曲变形仿真与验证[J]. 广东工业大学学报, 2020, 37(02): 94-101.
[3] 黄太昌, 尹应梅, 吕建兵, 李俊禧. 不同RAP掺量温拌再生改性沥青抗变形性能研究[J]. 广东工业大学学报, 2019, 36(03): 103-110.
[4] 吴智新, 董博, 周延周. 层析测量聚合物材料内部连续变化的离面变形场[J]. 广东工业大学学报, 2016, 33(06): 62-66.
[5] 马平, 廖明易, 王志勇. 起重机械用绳排索具力学与疲劳特性研究[J]. 广东工业大学学报, 2016, 33(05): 65-68.
[6] 邓超兵, 张程潇, 白玉磊, 周延周. 提高数字体图像相关算法精度和计算效率的方法[J]. 广东工业大学学报, 2015, 32(1): 80-84.
[7] 江志伟, 魏德宏, 张兴福. 变形监测资料管理系统的设计与实现[J]. 广东工业大学学报, 2013, 30(4): 116-120.
[8] 刘昆,彭美春,林怡青,王海龙. 基于ANSYS Workbench鼓式制动器冲焊蹄的有限元分析[J]. 广东工业大学学报, 2013, 30(1): 92-96.
[9] 覃银红,鲍鸿,周延周,周兵. 变曲率高聚物材料表面三维轮廓和变形场分布的同时测量[J]. 广东工业大学学报, 2012, 29(4): 39-42.
[10] 陈和恩, , 冯开平, 潘礼培, 吴悦明, . 建筑形变动画研究[J]. 广东工业大学学报, 2012, 29(2): 94-96.
[11] 马登富, 杨雪荣, 成思源, 张湘伟. 基于ACIS平台的变形造型技术[J]. 广东工业大学学报, 2011, 28(4): 65-70.
[12] 冷文兵; 袁鸽成; 倪学明; 路浩东;. 5083铝合金在3.5%NaCl溶液中的应力腐蚀行为[J]. 广东工业大学学报, 2009, 26(1): 7-.
[13] 邹锦华; 王荣辉; 魏德敏; . 新型轻轨车辆钢套橡胶轮轮缘大变形分析[J]. 广东工业大学学报, 2009, 26(1): 9-.
[14] 赵璐芳; 成思源; 骆少明; 张湘伟; . 几何约束条件在变形B样条曲线造型中的实现[J]. 广东工业大学学报, 2006, 23(3): 77-80.
[15] 韩冰; 刘文娟; 袁鸽成; . 7055铝合金高温压缩变形的流变应力[J]. 广东工业大学学报, 2004, 21(2): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!