广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 1-13.doi: 10.12052/gdutxb.210124

• 木质素科学与技术 •    下一篇

木质素低共熔溶剂分离、功能材料制备及应用研究进展

罗朝兵, 李海潮, 游婷婷, 许凤   

  1. 北京林业大学 材料科学与技术学院, 北京 100083
  • 收稿日期:2021-08-22 出版日期:2022-01-25 发布日期:2022-01-20
  • 通信作者: 许凤(1970-),女,教授,主要研究方向为生物质高值化利用,E-mail:xfx315@bjfu.edu.cn
  • 作者简介:罗朝兵(1991-),男,博士研究生,主要研究方向为木质素高值化利用
  • 基金资助:
    国家重点研发计划项目(2021YFC2101304)

Progress on Lignin Deep Eutectic Solvent Fractionation, Functional Materials Preparation and Industrial Application

Luo Chao-bing, Li Hai-chao, You Ting-ting, Xu Feng   

  1. College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
  • Received:2021-08-22 Online:2022-01-25 Published:2022-01-20

摘要: 木质素化学结构及分子组成复杂, 工业生产中难以实现高效清洁分离。传统的制浆或预处理过程得到的木质素一般会发生降解或缩合, 且纯度低, 限制了其后续高值化利用。因此, 开发新型、绿色的木质素分离技术尤为重要。低共熔溶剂(Deep Eutectic Solvent, DES)分离法作为一种新型绿色木质素分离技术, 是当前生物质精炼领域的研究热点。在此基础上, 保留木质素分子结构中活性基团, 如芳香基、酚羟基、醇羟基、羰基共轭双键, 以提高其反应活性, 制备高附加值功能材料, 有望在电子、储能、绿色包装等新兴领域推动产业化应用。本文以课题组的研究成果为基础, 综述了常见的DES种类、工艺优化与分离木质素的性质、木质素功能材料的制备, 以及木质素酚醛树脂、缓释肥及可降解材料的应用, 以期为木质素进一步开发利用提供一定的参考。

关键词: 木质素分离, 低共熔溶剂, 功能材料制备, 超级电容器, 酚醛树脂

Abstract: The structure and molecular composition complexity of lignin make it difficult to be extracted from the biomass. In addition, the traditional fractionation methods usually lead to degradation and condensation of lignin with low purity, which hinders its valorization. Therefore, it is urgent to develop a new and environmentally friendly method for lignin fractionation. As a promising and green solvent for lignin fractionation, deep eutectic solvent (DES) has been a hotspot in the fields of biorefinery and accumulated many excellent achievements. Many active groups, including aryl, phenolic hydroxyl, alcohol hydroxyl and carbon based conjugate double bond, exist in molecular structure of lignin, leading to high activity for preparation of some functional materials, which has a strong industrial application prospect. Based on the our latest researches, the latest research progress in lignin fractionation by DES, the preparation of lignin-based functional materials and the application of lignin phenolic resin, lignin-based slow/controlled release fertilizer and lignin-based biodegradable material are concluded in the study.

Key words: lignin fractionation, deep eutectic solvent (DES), functional materials preparation, supercapacitor, phenolic resin

中图分类号: 

  • TQ351
[1] 裴继诚, 杨淑慧, 平清伟, 等. 植物纤维化学 [M]. 北京: 中国轻工业出版社, 2016.
[2] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858.
LU Y, WEI X Y, ZONG Z M, et al. Structure investigation and application of lignins [J]. Progress in Chemistry, 2013, 25(5): 838-858.
[3] LIAO J J, LATIF N H A, TRACHE D, et al. Current advancement on the isolation, characterization and application of lignin [J]. International Journal of Biological Macromolecules, 2020, 162(1): 985-1024.
[4] SHAO Z Y, FU Y J, WANG P, et al. Modification of the aspen lignin structure during integrated fractionation process of autohydrolysis and formic acid delignification [J]. International Journal of Biological Macromolecules, 2020, 165: 1727-1737.
[5] CHAKAR F S, RAGAUSKAS A J. Review of current and future softwood kraft lignin process chemistry [J]. Industrial Crops & Products, 2004, 20(2): 131-141.
[6] 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448.
WANG H, YANG D J, QIAN Y, et al. Recent progress in the preparation and application of lignin-based functional materials [J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448.
[7] SANCHEZ P B, GONZALEZ B, SALGADO J, et al. Physical properties of seven deep eutectic solvents based on L-proline or betaine [J]. Journal of Chemical Thermodynamics, 2019, 131: 517-523.
[8] TIAN D, GUO Y, HU J, et al. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity [J]. International Journal of Biological Macromolecules, 2020, 142: 288-297.
[9] LIU Q, ZHAO X, YU D, et al. Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin [J]. Green Chemistry, 2019, 21(19): 5291-5297.
[10] 常杰, 刘钧, 郭姝君, 等. 新型深度共熔溶剂选择性分离木质素的研究 [J]. 华南理工大学学报(自然科学版), 2016, 44(6): 14-20.
CHANG J, LIU J, GUO S J, et al. Investigation into selective separation of lignin in novel deep eutectic solvent [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(6): 14-20.
[11] KUMAR A K, SHARMA S, SHAH E, et al. Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: a case study [J]. Journal of Molecular Liquids, 2018, 260: 313-322.
[12] SHEN X J, WEN J L, MEI Q Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization [J]. Green Chemistry, 2019, 21(2): 275-283.
[13] TAN Y T, NGOH G C, CHUA A S M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch [J]. Industrial Crops and Products, 2018, 123: 271-277.
[14] LI T, LYU G, LIU Y, et al. Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu) [J]. International Journal of Molecular Sciences, 2017, 18(11): 2266.
[15] GUO Z W, ZHANG Q L, YOU T T, et al. Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization [J]. Green Chemistry, 2019, 21(11): 3099-3108.
[16] KOHLI K, KATUWAL S, BISWAS A, et al. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents [J]. Bioresource Technology, 2020, 303: 122897.
[17] ZHANG C W, Xia S Q, MA P S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents [J]. Bioresource Technology, 2016, 219: 1-5.
[18] LI W X, XIAO W Z, YANG Y Q, et al. Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization [J]. Industrial Crops and Products, 2021, 170: 113692.
[19] GUO Z W, LING Z, WANG C, et al. Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue [J]. Bioresource Technology, 2018, 265: 334-339.
[20] XIA Q, LIU Y, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass [J]. Green Chemistry, 2018, 20(12): 2711-2721.
[21] GUO Z, LI D, YOU T, et al. New lignin streams derived from heteropoly acids-enhanced neutral deep eutectic solvent fractionation: towards structural elucidation and antioxidant performance [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 12110.
[22] SONG Y, DONG Y, YANG T, et al. Synthesis and pharmacological evaluation of novel bisindolylalkanes analogues [J]. Bioorganic & Medicinal Chemistry, 2013, 21: 7624-7627.
[23] YOO C G, LI M, MENG X, et al. Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis[J]. Green Chemistry, 2017, 19: 2006-2016.
[24] TAN T, NGOH G C, CHUA A S M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch[J]. Industrial Crops and Products, 2018, 123: 271-277.
[25] JI Q, YU X, YAGOUB A G A, et al. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent [J]. Industrial Crops and Products, 2020, 149: 112357.
[26] KIM K H, DUTTA T, SUN J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry, 2018, 20(4): 809-815.
[27] PROCENTESE A, JOHNSON E, ORR V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology, 2015, 192: 31-36.
[28] SHARMA M, MUKESH C, MONDAL D, et al. Dissolution of α-chitin in deep eutectic solvents [J]. RSC Advances, 2013, 3: 18149-18155.
[29] LIU Y, CHEN W, XIA Q, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent [J]. ChemSusChem, 2017, 10(8): 1692-1700.
[30] CHEN Z, WAN C. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment [J]. Bioresource Technology, 2018, 250: 532-537.
[31] GAUDINO E C, TABASSO S, GRILLO G, et al. Wheat straw lignin extraction with bio-based solvents using enabling technologies [J]. Comptes Rendus Chimie, 2018, 21(6): 563-571.
[32] LI P, ZHANG Q, ZHANG X, et al. Subcellular dissolution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated Pinus bungeana Zucc [J]. Bioresource Technology, 2019, 288: 121475.
[33] CHEN W M, WANG X, FEIZBAKHSHAN M, et al. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors [J]. Journal of Colloid and Interface Science, 2019, 540: 524-534.
[34] LIU B, HUANG Y, CAO H J, et al. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane [J]. Journal of Solid State Electrochemistry, 2018, 22(3): 807-816.
[35] ZHANG L, YOU T, ZHOU T, et al. Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors [J]. ACS Applied Materials & Interfaces, 2016, 8: 13918-13925.
[36] GUO S, LI H, ZHANG X, et al. Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance [J]. Carbon, 2021, 174: 500-508.
[37] MA L, ZHAO T C, XU F, et al. A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density [J]. Chemical Engineering Journal, 2021, 405: 126694.
[38] UGARTONDO V, MITJANS M, VINARDELL M P. Comparative antioxidant and cytotoxic effects of lignins from different sources [J]. Bioresource Technology, 2008, 99(14): 6683-6687.
[39] KAI D, TAN M J, CHEE P L, et al. Towards lignin-based functional materials in a sustainable world [J]. Green Chemistry, 2016, 18: 1175-1200.
[40] DOMENEK S, LOUAIFI A, GUINAULT A, et al. Potential of lignins as antioxidant additive in active biodegradable packaging materials [J]. Journal of Polymers and the Environment, 2013, 21: 692-701.
[41] MONTES M L I, LUZI F, DOMINICI F, et al. Design and characterization of PLA bilayer films containing lignin and cellulose nanostructures in combination with umbelliferone as active ingredient [J]. Frontiers in Chemistry, 2019, 7: 157.
[42] YANG W, FORTUNATI E, BERTOGLIO F, et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles [J]. Carbohydrate Polymers, 2018, 181: 275-284.
[43] YANG W, OWCZAREK J S, FORTUNATI E, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging [J]. Industrial Crops and Products, 2016, 94: 800-811.
[44] HE X, LUZI F, HAO X, et al. Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles [J]. International Journal of Biological Macromolecules, 2019, 127: 665-676.
[45] TAVARES L B, ITO N M, SALVADORI M C, et al. PBAT/kraft lignin blend in flexible laminated food packaging: peeling resistance and thermal degradability [J]. Polymer Testing, 2018, 67: 169-176.
[46] TAVARES L B, ROSA D D S. Stabilization effect of kraft lignin into PBAT: thermal analyses approach [J]. Revista Matéria, 2019, 24: e12405.
[47] KAI D, ZHANG K, JIANG L, et al. Sustainable and antioxidant lignin–polyester copolymers and nanofibers for potential healthcare applications [J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 6016-6025.
[48] SUNTHORNVARABHAS J, LIENGPRAYOON S, SUWONSICHON T. Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product [J]. Industrial Crops and Products, 2017, 109: 857-861.
[49] ALZAGAMEEM A, KLEIN S E, BERGS M, et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms [J]. Polymers, 2019, 11: 670.
[50] AADIL K R, PRAJAPAATI D, JHA H. Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin [J]. Food Packaging and Shelf Life, 2016, 10: 25-33.
[51] SPASOJEVIĆ D, ZMEJKOSKI D, GLAMOČLIJA J, et al. Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment [J]. International Journal of Antimicrobial Agents, 2016, 48: 732-735.
[52] LI M, JIANG X, WANG D, et al. In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application [J]. Colloids and Surfaces B:Biointerfaces, 2019, 177: 370-376.
[53] LEE E S, KIM Y O, HA Y M, et al. Antimicrobial properties of lignin-decorated thin multi-walled carbon nanotubes in poly(vinyl alcohol) nanocomposites [J]. European Polymer Journal, 2018, 105: 79-84.
[54] ERAKOVIC S, JANKOVIC A, TSUI G, et al. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition [J]. International Journal of Molecular Sciences, 2014, 15: 12294-12322.
[55] 范娟, 詹怀宇, 刘明华. 木质素基吸附材料的研究进展[J]. 中国造纸学报, 2004, 19(2): 181-187.
FAN J, ZHAN H Y, LIU M H. Progress in research on lignin-based adsorption material [J]. Transactions of China Pulp and Paper, 2004, 19(2): 181-187.
[56] DIDEHBAN K, MIRSHOKRAIE S, AZIMVAND J. Safranin-O dye removal from aqueous solution using superabsorbent lignin nanoparticle/polyacrylic acid hydrogel [J]. Eurasian Journal of Analytical Chemistry, 2018, 13: 3.
[57] ZHANG D, WANG L, ZENG H, et al. Novel polyethyleneimine functionalized chitosan–lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg(II) ions from aqueous solution [J]. Environmental Science:Nano, 2020, 7: 793-802.
[58] 薛蓓, 房伶晏, 梁辰, 等. 磁性木质素制备及其对染料的吸附性能[J]. 林业工程学报, 2019, 4(4): 85-92.
XUE B, FANG L Y, LIANG C, et al. Preparation of lignin/Fe3O4 based magnetic material and their performance in adsorption of dyes [J]. Journal of Forestry Engineering, 2019, 4(4): 85-92.
[59] DIAS O A T, SAIN M, CESARINO I, et al. Development of high bio-content polypropylene composites with different industrial lignins [J]. Polymers for Advanced Technologies, 2019, 30: 70-78.
[60] YE D, JIANG L, HU X, et al. Lignosulfonate as reinforcement in polyvinyl alcohol film: mechanical properties and interaction analysis [J]. International Journal of Biological Macromolecules, 2016, 83: 209-215.
[61] DIOP A, MIJIYAWA F, KOFFI F, et al. Montplaisir study of lignin dispersion in low-density polyethylene [J]. Journal of Thermoplastic Composite Materials, 2015, 28: 1662-1674.
[62] LIAO J, BROSSE N, PIZZI A, et al. Polypropylene blend with polyphenols through dynamic vulcanization: mechanical, rheological, crystalline, thermal, and UV protective property [J]. Polymer, 2019, 11: 1108.
[63] DEHNE L, BABARRO C V, SAAKE, B, et al. Influence of lignin source and esterification on properties of lignin-polyethylene blends [J]. Industrial Crops and Products, 2016, 86: 320-328.
[64] MALDHURE A V, EKHE J D, DEENADAYDLAN E. Mechanical properties of polypropylene blended with esterified and alkylated lignin [J]. Journal of Applied Polymer Science, 2012, 125: 1701-1712.
[65] ZHANG Y, ZHOU S, FANG X, et al. Renewable and flexible UV-blocking film from poly(butylene succinate) and lignin [J]. European Polymer Journal, 2019, 116: 265-274.
[66] 唐梦菲, 王明杰, 陈瑶, 等. 酸酐改性硫酸盐木质素增强HDPE复合材料的物理力学性[J]. 西北林学院学报, 2020, 35(2): 202-207.
TANG M F, WANG M J, CHEN Y, et al. Physical and mechanical properties of HDPE-based composites reinforced with anhydrides modified industrial waste lignin [J]. Journal of Northwest Forestry University, 2020, 35(2): 202-207.
[67] BERNAEDINI J, CINELLI P, ANGUILLESI I, et al. Flexible polyurethane foams green production employing lignin or oxypropylated lignin [J]. European Polymer Journal, 2015, 64: 147-156.
[68] CHEN P, ZHANG L, PENG S, et al. Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics [J]. Journal of Applied Polymer Science, 2006, 101: 334-341.
[69] BARNES S H, GOSWAMI M, Nguyen N A, et al. An ionomeric renewable thermoplastic from lignin-reinforced rubber [J]. Macromolecular Rapid Communications, 2019, 40(13): 1900059.
[70] CHEN J, FAN X, ZHANG L, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366.
[71] MULDER W J, GOSSELINK R J A, VINGERGOEDS M H, et al. Lignin based controlled release coatings[J]. Industrial Crops and Products, 2011, 34: 915-920.
[72] JIAO G J, PENG P, SUN S L, et al. Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer[J]. International Journal of Biological Macromolecules, 2019, 127: 544-554.
[73] LI J, WANG M, SHE D, et al. Structural functionalization of industrial softwood kraft lignin for simple dip-coating of urea as highly efficient nitrogen fertilizer[J]. Industrial Crops and Products, 2017, 109: 255-265.
[74] 马艳丽, 王儒儒, 方桂珍, 等. 聚丙烯酸接枝碱木质素基铁肥的制备及其缓释性能[J]. 农业工程学报, 2012, 28(18): 208-214.
MA Y L, WANG R R, FANG G Z. Preparation and release release performance of polyacrylic acid grafted ailkali lignin-based iron fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18): 208-214.
[75] 任世学, 倪海月, 田金玲, 等. 碱木质素交联PVA共混啶虫脒缓释薄膜的制备及性能[J]. 北京林业大学学报, 2015, 37(12): 116-121.
REN S X, NI H Y, TIAN J L, et al. Preparation and performance of alkali lignin-PVA crosslinked blend slow release acetaniprid film [J]. Journal of Beijing Forestry University, 2015, 37(12): 116-121.
[76] FERTAHI S, BERTRAND I, AMJOUD M B, et al. Properties of coated slow-release triple superphosphate (TSP) fertilizers based on lignin and carrageenan formulations [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10371.
[77] 李澜鹏, 李秀峥, 白富栋. 木质素基酚醛树脂胶黏剂研究进展 [J]. 当代化工, 2021, 50(7): 1711-1715.
LI L P, LI X Z, BAI F D. Research progress of lignin-based phenolic resin adhesive [J]. Contemporary Chemical Industry, 2021, 50(7): 1711-1715.
[78] 许凤, 邵鲁鹏, 游婷婷, 等. 一种酚醛树脂胶黏剂及其制备方法和使用方法: 105694779 A [P]. 2016-06-22.
[79] 许凤, 游婷婷, 郭思勤, 等. 一种木质素基绿色胶黏剂的制备及使用方法: 105694781 B [P]. 2019-03-01.
[80] 许凤, 游婷婷, 贡立洋, 等. 一种高木质素替代比绿色酚醛树脂胶黏剂的制备方法: 108587538 B [P]. 2021-01-22.
[81] 王凯, 刘凤霞, 魏炜, 等. 三步共聚法制备木质素基酚醛树脂胶粘剂[J]. 热固性树脂, 2020, 35(2): 12-17.
WANG K, LIU F X, WEI W, et al. Preparation of lignin-based phenolic resin adhesive by three-step copolymerization [J]. Thermosetting Resin, 2020, 35(2): 12-17.
[82] JIN Y, CHENG X, ZHENG Z. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin [J]. Bioresource Technology, 2010, 101(6): 2046-2048.
[83] ZHANG W, MA Y, XU Y, et al. Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin; adhesive [J]. International Journal of Adhesion & Adhesives, 2013, 40(1): 11-18.
[84] TACHON N, BENJELLOUM-MLAYAH B, DALMAS M. Organosolv wheat straw lignin as a phenol substitute for green phenolic resin [J]. Bioresources, 2016, 11(3): 5797.
[85] KALAMI S, AREFMANESH M, MASTER E, et al. Replacing 100% of phenol in phenolic adhesive formulations with lignin [J]. Journal of Applied Polymer Science, 2017, 134(30): 45124-45132.
[86] DANIELSON B, SIMONSON R. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood [J]. Journal of Adhesion Science and Technology, 2012, 12(9): 923-939.
[87] 舒友, 许倩, 赵鑫鹏, 等. 木质素改性聚醋酸乙烯酯/聚丁二酸丁二醇酯复合材料的性能研究[J]. 精细化工中间体, 2019, 49(1): 34-43.
SHU Y, XU Q, ZHAO X P, et al. Preparation and properties of PBS/L-PVAc composites [J]. Fine Chemical Intermediates, 2019, 49(1): 34-43.
[88] 舒友, 胡扬剑, 陈迪钊, 等. 用于聚丁二酸丁二醇酯的阻燃剂、阻燃聚丁二酸丁二醇酯材料及其制备方法: 109627452 A [P]. 2019-04-16
[89] LIU L, HUANG G, SONG P, et al. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate [J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 4732-4742.
[90] 穆春玉. 木质素/聚乳酸复合材料的制备与性能研究[D]. 成都: 西南交通大学, 2014.
[91] 刘志华, 聂率, 龚明山, 等. 木质素/木粉/聚乳酸复合材料的制备及其性能[J]. 塑料, 2019, 2: 8-13.
LIU Z H, NIE S, GONG M S, et al. Preparation and properties of lignin/wood flour/PLA composite [J]. Plastics, 2019, 2: 8-13.
[92] GORDOBIL O, EGÜÉS I, LLANO-PONTE R, et al. Physicochemical properties of PLA lignin blends [J]. Polymer Degradation and Stability, 2014, 108: 330-338.
[93] 苏玲, 任世学, 方桂珍. 戊二醛交联碱木质素/聚乙烯醇膜的制备及其光学性能[J]. 生物质化学工程, 2013, 47(3): 1-5.
SU L, REN S X, FANG G Z. Preparation and optical properties of glutaraldehyde crosslinked alkali lignin/PVA films [J]. Biomass Chemical Engineering, 2013, 47(3): 1-5.
[94] CORRADINI E, PINEDE E A G, HECHENLEITNER A A W. Lignin-poly (vinyl alcohol) blends studied by thermal analysis [J]. Polymer Degradation & Stability, 1999, 66(2): 199-208.
[95] KUBO S, KADLA J F. The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin [J]. Biomacromolecules, 2003, 4(3): 561-567.
[96] 王飞. 木质素/聚己内酯降解塑料的制备及性能研究[D]. 绵阳: 西南科技大学, 2015.
[97] MOUSAVIOUN P, HALLEY P J, DOHERTY W. Thermophysical properties and rheology of PHB/lignin blends [J]. Industrial Crops and Products, 2013, 50: 270-275.
[98] KAI D, ZHANG K, LIOW S S, et al. New dual functional PHB-grafted lignin copolymer: synthesis, mechanical properties, and biocompatibility studies [J]. ACS Applied Bio Materials, 2019, 2: 127-134.
[1] 万涛, 原文雄, 赵晨, 闵永刚. 二维材料与导电聚合物复合材料在柔性超级电容器中的研究进展[J]. 广东工业大学学报, 2023, 40(02): 74-81.
[2] 于健, 陈泽虹, 彭新文. 生物质基储能材料在柔性器件中的应用[J]. 广东工业大学学报, 2022, 39(01): 41-49.
[3] 刘丽英; 张海燕; 刘炳容; 陈列春; 陈易明; . 纳米NixCo1-xO的制备及超级电容的性能[J]. 广东工业大学学报, 2008, 25(3): 18-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!