广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (02): 74-81.doi: 10.12052/gdutxb.210174
万涛, 原文雄, 赵晨, 闵永刚
Wan Tao, Yuan Wen-xiong, Zhao Chen, Min Yong-gang
摘要: 可穿戴电子设备的快速发展推动了人们对柔性超级电容器的研究。导电聚合物由于其高导电性、快速可逆的氧化还原反应及类似传统聚合物材料的柔韧性,在柔性超级电容器中具有巨大的应用潜力。纯导电聚合物电极电化学性能有限(低循环寿命和实际容量),与新兴的二维材料组成复合材料能改善其电化学性能。本文首先介绍了二维材料与导电聚合物复合材料从一维到三维的制备与组装策略,随后综述了它们在不同结构(纤维结构、三明治结构和平面叉指结构)柔性超级电容器中的最新研究进展,最后指出了导电聚合物基复合材料在柔性超级电容器中面临的挑战以及未来的发展趋势。
中图分类号:
[1] EL-KADY M F, SHAO Y L, KANER R B. Graphene for batteries, supercapacitors and beyond [J]. Nature Reviews Materials, 2016, 1(7): 16033. [2] HUANG P, LETHIEN C, PINAUD S, et al. On-chip and freestanding elastic carbon films for micro-supercapacitors [J]. Science, 2016, 351(6274): 691-695. [3] JIA R, SHEN G, QU F, et al. Flexible on-chip micro-supercapacitors: efficient power units for wearable electronics [J]. Energy Storage Materials, 2020, 27: 169-186. [4] 李越珠, 黄兴文, 闵永刚, 等. 锂离子电池高镍三元正极材料LiNi0.8Co0.1Mn0.1O2研究进展[J]. 广东工业大学学报, 2021, 38(5): 68-74. LI Y Z, HUANG X W, MIN Y G, et al. Research progress of LiNi0.8Co0.1Mn0.1O2 high nickel ternary cathode material for lithium ion batteries [J]. Journal of Guangdong University of Technology, 2021, 38(5): 68-74. [5] YOO D, KIM M, JEONG S, et al. Chemical synthetic strategy for single-layer transition-metal chalcogenides [J]. Journal of the American Chemical Society, 2014, 136(42): 14670-14673. [6] WANG G, ZHANG L, ZHANG J, et al. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41(2): 797-828. [7] YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions [J]. Energy & Environmental Science, 2015, 8(3): 702-730. [8] PENG X, WU C Z. Two-dimensional nanomaterials for applications in flexible supercapacitors[M]//WU C Z. Inorganic two-dimensional nanomaterials: Fundamental understanding characterizations and energy applications. Cambridge: Royal Society Chemistry, 2017. [9] TAN C, CHAO X, WU X, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331. [10] HAN Y, GE Y, WALLACE G G, et al. Recent progress in 2D materials for flexible supercapacitors [J]. Journal of Energy Chemistry, 2018, 27(1): 57-72. [11] LIU L, NIU Z, CHEN J, et al. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations [J]. Chemical Society Reviews, 2016, 45(15): 4340-4363. [12] ZHANG L, ZHAO X. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2016, 38(9): 2520-2531. [13] LONG J W, BÉLANGER D, BROUSSE T, et al. Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes [J]. MRS Bulletin, 2011, 36(7): 513-522. [14] QI D P, CHEN X D. Flexible supercapacitors based on two‐dimensional materials[M]. Weiheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. [15] SHOWN I, GANGULY A, CHEN L, et al. Conducting polymer-based flexible supercapacitor [J]. Energy Science & Engineering, 2015, 3(1): 2-26. [16] ZHAO C, JIA X, YU C, et al. Conducting polymer composites for unconventional solid-state supercapacitors [J]. Journal of Materials Chemistry A, 2020, 8(9): 4677-4699. [17] CHENG M, MENG Y, WEI Z, et al. Conducting polymer nanostructures and their derivatives for flexible supercapacitors [J]. Israel Journal of Chemistry, 2018, 58(12): 1299-1314. [18] MALINAUSKAS A. Chemical deposition of conducting polymers [J]. Polymers, 2001, 42(9): 3957-3972. [19] ZHANG H. Ultrathin two-dimensional nanomaterials [J]. ACS Nano, 2015, 9(10): 9451-9469. [20] KHAN A, GHOSH S, PRADHAN B, et al. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications [J]. Bulletin of the Chemical Society of Japan, 2017, 90(6): 627-648. [21] PENG X, PENG L, WU C, et al. Two dimensional nanomaterials for flexible supercapacitors [J]. Chemical Society Reviews, 2014, 43(10): 3303-3323. [22] HUANG X, TAN C, YIN Z, et al. 25th anniversary article: hybrid nanostructures based on two‐dimensional nanomaterials [J]. Advanced Materials, 2014, 26(14): 2185-2204. [23] YANG W, ZHANG X, XIE Y, et al. Advances and challenges in chemistry of two-dimensional nanosheets [J]. Nano Today, 2016, 11(6): 793-816. [24] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides [J]. ACS Nano, 2012, 6(2): 1322-1331. [25] MENG Y, JIN L, CAI B, et al. Facile fabrication of flexible core-shell graphene/conducting polymer microfibers for fibriform supercapacitors [J]. RSC Advances, 2017, 7(61): 38187-38192. [26] WU X, WU G, TAN P, et al. Construction of microfluidicoriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors [J]. Journal of Materials Chemistry A, 2018, 6(19): 8940-8946. [27] ZHANG J, QIN S, WANG Z, et al. Highly conductive Ti3C2T x MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors [J]. Small, 2019, 15(8): 1804732. [28] LI L, ZHANG N, ZHANG M, et al. Flexible Ti3C2T x/PEDOT: PSS films with outstanding volumetric capacitance for asymmetric supercapacitors [J]. Dalton Transactions, 2019, 48(5): 1747-1756. [29] QIN L, TAO Q, GHAZALY A, et al. High‐performance ultrathin flexible solid‐state supercapacitors based on solution processable Mo1.33C MXene and PEDOT: PSS [J]. Advanced Functional Materials, 2018, 28(2): 1703808. [30] GE Y, WANG C, CHAO Y, et al. A robust free-standing MoS2/poly (3, 4-ethylenedioxythiophene) : poly (styrenesulfonate) film for supercapacitor applications [J]. Electrochimica Acta, 2017, 235(1): 348-355. [31] MOUSSA M, EI-KADY M, MA J, et al. Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density [J]. Composites Science and Technology, 2018, 160: 50-59. [32] MEMON M, BAI W, SUN J, et al. Conjunction of conducting polymer nanostructures with macroporous structured graphene thin films for high-performance flexible supercapacitors [J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11711-11719. [33] YANG M, JEONG J, HUH Y, et al. High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites [J]. Composites Science and Technology, 2015, 121(16): 123-128. [34] TAN Y, LEE J. Graphene for supercapacitor applications [J]. Journal of Materials Chemistry A, 2013, 1(47): 14814-14843. [35] KIM J W, CHOI B G. All-solid state flexible supercapacitors based on graphene/polymer composites [J]. Materials Chemistry and Physics, 2015, 159: 114-118. [36] KASHANI H, CHEN L, ITO Y, et al. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors [J]. Nano Energy, 2016, 19: 391-400. [37] LI L, WANG K, HUANG Z, et al. Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode [J]. Nano Research, 2016, 9(10): 2938-2949. [38] LI K, LIU X, CHEN S, et al. A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes [J]. Journal of Energy Chemistry, 2019, 32: 166-173. [39] LIU L, NIU Z, ZHANG L, et al. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors [J]. Advanced Materials, 2014, 26(28): 4855-4862. [40] BARAKZEHI M, MONTAZER M, SHARIF F, et al. A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite [J]. Electrochimica Acta, 2019, 305: 187-196. [41] HU R, ZHAO J, ZHU G, et al. Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor [J]. Electrochimica Acta, 2018, 261: 151-159. [42] ZHU M, HUANG Y, DENG Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene [J]. Advanced Energy Materials, 2016, 6(21): 1600969. [43] SONG B, LI L, LIN Z, et al. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities [J]. Nano Energy, 2015, 16: 470-478. [44] LIU W, YAN X, CHEN J, et al. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers [J]. Nanoscale, 2013, 5(13): 6053-6062. [45] PU X, LIU M, LI L, et al. Earable textile‐based in‐plane microsupercapacitors [J]. Advanced Energy Materials, 2016, 6(24): 1601254. [46] GAO C, GAO J, SHAO C, et al. Versatile origami micro-supercapacitors array as a wind energy harvester [J]. Journal of Materials Chemistry A, 2018, 6(40): 19750-19756. [47] SASIKALA S, LEE K, LIM J, et al. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors [J]. ACS Nano, 2017, 11(9): 9424-9434. [48] QU G, CHENG J, LI X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode [J]. Advanced Materials, 2016, 28(19): 3646-3652. [49] LU Z, FOROUGHI J, WANG C, et al. Superelastic hybrid CNT/graphene fibers for wearable energy storage [J]. Advanced Energy Materials, 2018, 8(8): 1702047. [50] CAI S, HUANG T, CHEN H, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors [J]. Journal of Materials Chemistry A, 2017, 5(43): 22489-22494. |
[1] | 龙慧, 魏子乔, 罗思瑶, 董华锋, 陈传盛. In2Se3纳米片改性的GO/WS2/Mg-ZnO复合材料光催化性能的研究[J]. 广东工业大学学报, 2022, 39(04): 107-112. |
|