广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (03): 89-94.doi: 10.12052/gdutxb.210055

• • 上一篇    下一篇

季节指数改进的PM2.5质量浓度组合预测模型研究

曾江毅, 李志生, 欧耀春, 金宇凯   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2021-06-03 出版日期:2022-05-10 发布日期:2022-05-19
  • 通信作者: 李志生(1972-),男,副教授,主要研究方向为建筑节能、室内环境控制及污染物去除,E-mail:chinaheat@163.com
  • 作者简介:曾江毅(1998-),男,硕士研究生,主要研究方向为室内空气品质
  • 基金资助:
    广东省自然科学基金资助项目(2016A030313711,S2011040003755)

PM2.5 Concentration Improving Prediction Modeling of Seasonal Index

Zeng Jiang-yi, Li Zhi-sheng, Ou Yao-chun, Jin Yu-kai   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-06-03 Online:2022-05-10 Published:2022-05-19

摘要: 随着我国的经济和城市化迅速发展,PM2.5主导的区域空气污染已成为紧迫、突出的环境问题。据相关研究表明,PM2.5在不同季节质量浓度差异较大。根据广州市2015~2019年的PM2.5月均质量浓度数据,结合大气污染物及气象因素,引入季节指数,建立预测PM2.5质量浓度的改进多元线性回归和多层感知器组合预测模型,探析广州市大气污染物中PM2.5质量浓度的变化规律。结果表明,用季节指数改进的组合预测模型对PM2.5质量浓度进行预测分析,拟合结果良好。使用不同评价指标将组合模型与传统的多层感知器预测模型和多元线性回归模型进行对比,该组合模型的均方根误差(Root Mean Square Error,RMSE)、平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)、平均绝对误差(Mean Absolute Error,MAE)分别比多层感知器模型减少了23.1%、31%、24.2%;比多元线性回归模型减少了35.3%、41.3%、41%。该模型精度均优于传统的多元线性回归模型和多层感知器模型,能更好地预测环境PM2.5质量浓度,为优化环境提供参考。

关键词: PM2.5质量浓度预测, 多元线性回归, 多层感知器, 神经网络

Abstract: In recent years, China's economy and urbanization have developed rapidly, and the development of cities often comes at the expense of the environment. Regional air pollution dominated by PM2.5 has become the most pressing and prominent environmental problem in China. According to relevant studies, PM2.5 concentrations vary greatly in different seasons. Based on the PM2.5 monthly mean concentration data of Guangzhou from 2015 to 2019, combined with atmospheric pollutants and meteorological factors, with the seasonal index introduced, an improved multiple linear regression and multi-layer perceptual combination prediction model for PM2.5 concentration is established, to analyze the variation law and future development trend of PM2.5 concentration in Guangzhou. The results show that the combined prediction model with the improved seasonal index is used to predict and analyze PM2.5, and the fitting results are good. Compared with the multi-layer perceptron prediction model by using different evaluation indexes, the RMSE(Root Mean Square Error), MAPE(Mean Absolute Percentage Error) and MAE(Mean Absolute Error) of the combined model are reduced by 23.1%, 31% and 24.2% . Compared with the multiple linear regression model, the reduction is 35.3%, 41.3% and 41% . The accuracy of the model is better than the traditional multiple linear regression model and multi-layer perceptron model, which can better predict environmental PM2.5 concentration and provide reference for optimizing the environment.

Key words: PM2.5 concentration forecasting, multiple linear regression, multilayer perceptron, neural networks

中图分类号: 

  • X831
[1] FAN H, ZHAO C F, YANG Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018 [J]. Atmospheric Environment, 2020, 220(117066): 1-12.
[2] 王玮, 汤大钢, 刘红杰, 等. 中国PM2.5污染状况和污染特征的研究[J]. 环境科学研究, 2000(1): 1-5.
WANG W, TANG D G, LIU H J, et al. Research on corrent pollution sataus and pollution characteristics of PM2.5 in China [J]. Research of Environmental Sciences, 2000(1): 1-5.
[3] 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(3): 82-87.
GAN Y Y, LI Z S. A numerical effect on PM2.5 in the kitchen [J]. Journal of Guangdong University of Technology, 2020, 37(3): 82-87.
[4] 张洪. 京津冀地区空气质量时空分布特征及PM2.5浓度预测[D]. 哈尔滨: 哈尔滨师范大学, 2020.
[5] XU X D, TONG T, ZHANG W, et al. Fine-grained prediction of PM2.5 concentration based on multisource data and deep learning [J]. Atmospheric Pollution Research, 2020, 11(10): 1728-1737.
[6] MASOOD A, AHMAD K. A model for particulate matter PM2.5 prediction for Delhi based on machine learning approaches [J]. Procedia Computer Science, 2020, 167(1): 2101-2110.
[7] 张怡文, 郭傲东, 吴海龙, 等. 基于PCA-BP神经网络的PM2.5季节性预测方法研究[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 231-238.
ZHANG Y W, GUO A D, WU H L, et al. Seasonal prediction of PM2.5 based on the PCA-BP neural network [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(5): 231-238.
[8] HE H D, LI M, WANG W L, et al. Prediction of PM2.5 concentration based on the similarity in air quality monitoring network [J]. Building and Environment, 2018, 137(1): 11-17.
[9] ASHA B C. Estimating PM2.5 concentration from satellite derived aerosol optical depth and meteorological variables using a combination model [J]. Atmospheric Pollution Research, 2019, 10(3): 847-857.
[10] LIU Z R, HU B, WANG L L, et al. Seasonal and diurnal variation in particulate matter (PM 10 and PM 2.5 ) at an urban site of Beijing: analyses from a 9-year study [J]. Environmental Science and Pollution Research, 2015, 22(1): 627-642.
[11] 李梓铭, 孙兆彬, 邵勰, 等. 北京城区PM2.5不同时间尺度周期性研究[J]. 中国环境科学, 2017, 37(2): 407-415.
LI Z M, SUN Z B, SHAO X, et al. Using Morlet wavelet analysis to analyze multiple time scale periodically in PM2.5 in Beijing [J]. China Environmental Science, 2017, 37(2): 407-415.
[12] 广东省统计局. 广东省第七次全国人口普查公报[EB/OL]. (2021-05-15)[2021-05-30]. http://stats.gd.gov.cn/attachment/0/421/421374/3284452.pdf.
[13] 何丹, 徐宝平, 吴丽芳, 等. 江西省典型城市气象因素对PM2.5和PM10污染特征影响分析——以萍乡市为例[J]. 能源研究与管理, 2020(4): 42-46.
HE D, XU B P, WU L F, et al. Analysis of the impact of meteorological factors on the pollution characteristics of PM2.5 and PM10 in the typical cities of Jiangxi Province—taking Pingxiang city as an example [J]. Energy Research and Mangement, 2020(4): 42-46.
[14] 焦晨, 黄艳然, 赵钦风, 等. 时间序列分解模型在山东省糖尿病门诊量预测中的应用[J]. 中国农村卫生事业管理, 2021, 41(2): 93-97.
JIAO C, HUANG Y R, ZHAO Q F, et al. Application of time series decomposition model to the predictionof the number of diabetics in Shandong Province [J]. Chinese Rural Health Service Administration, 2021, 41(2): 93-97.
[15] 郑薇, 王灿强, 李维德. 基于季节指数调整与HGWO-SVR算法的农产品价格预测模型[J]. 统计与决策, 2018, 34(19): 33-37.
ZHENG W, WANG C Q, LI W D. Forecasting model of agricultural products prices based on seasonal index adjustment and HGWO-SVR algorithm[J]. Statistics Decision, 2018, 34(19): 33-37.
[16] 郭秀英, 尹兴国, 张艳云. 季节性波动时间序列预测的分解季节指数法[J]. 数理统计与管理, 2000(6): 60-64.
GUO X Y, YIN X G, ZHANG Y Y. The analysis method of seasonal index number of time sequence of seasonal fluctuation [J]. Journal of Applied Statistics and Management, 2000(6): 60-64.
[17] XU W, REN G, LIU Y, et al. Forecasting energy consumption using a new GM–ARMA model based on HP filter: the case of Guangdong Province of China [J]. Economic Modelling, 2015, 45(1): 127-135.
[18] 陈通箭. 基于改进小波神经网络的高速公路季节性车流量预测模型[J]. 智能城市, 2020, 6(3): 22-24.
CHEN T J. Seasonal traffic flow prediction model of expressway based on improved wavelet neural network[J]. Intelligent City, 2020, 6(3): 22-24.
[19] SUN S, RAPPAPORT T S, RANGAN S, et al. Propagation path loss models for 5G urban micro-and macro-cellular scenarios[C]// 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). Nanjing: IEEE, 2016: 1-6.
[20] 谢劭峰, 赵云, 李国弘, 等. 基于WPA-WOA-BP神经网络的PM2.5浓度预测[J]. 大地测量与地球动力学, 2021, 41(1): 12-16.
XIE S F, ZHAO Y, LI G H, et al. Prediction of PM2.5 concentration based on WPA-WOA-BP neural network [J]. Journal of Geodesy and Geodynamics, 2021, 41(1): 12-16.
[21] 王徐凯, 余华银, 杨桂元, 等. 基于多层组合模型的武汉市月平均PM2.5浓度预测[J]. 牡丹江师范学院学报(自然科学版), 2021(1): 7-11.
WANG X K, YU H Y, YANG G Y, et al. Prediction of nonthly average PM2.5 concentration based on multilayer combination model: a case study of Wuhan [J]. Journal of Mudanjiang Normal University(Natural Sciences Edition), 2021(1): 7-11.
[22] 郭骐嘉, 姚宜斌, 周永江. 融合GNSS气象参数的PM2.5随机森林预测模型[J]. 测绘科学, 2021, 46(4): 37-42.
GUO Q J, YAO Y B, ZHOU Y J. PM2.5 random forest prediction model incorporating GNSS meteorological parameters[J]. Science of Surveying and Mapping, 2021, 46(4): 37-42.
[23] 王赛兰. 基于多元方法和时间序列的PM2.5浓度分析与预测[D]. 长沙: 湖南师范大学, 2019.
[24] 魏朋志, 谢劭峰, 周志浩, 等. 节假日效应下的PM2.5浓度预测[J/OL]. 桂林理工大学学报, 2021: 1-7(2021-03-03)[2021-03-22]. http://kns.cnki.net/kcms/detail/45.1375.N.20210303.1307.004.html.
WEI P Z, XIE S F, ZHOU Z H, et al. PM2.5 concentration prediction under holiday effect [J/OL]. Journal of Guilin University of Technology, 2021: 1-7 (2021-03-03)[2021-03-22]. http://kns.cnki.net/kcms/detail/45.1375.N.20210303.1307.004.html.
[25] 陈兵红, 靳全锋, 柴红玲, 等. 浙江省大气PM2.5时空分布及相关因子分析[J]. 环境科学学报, 2021: 41(3): 817-829.
CHEN B H, JIN Q F, CHAI H L, et al. Spatiotemporal distribution and correlation factors of PM2. 5 concentrations in Zhejiang Province[J]. Acta Scientiae Circumstantiae, 2021: 41(3): 817-829.
[1] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[2] 张锐, 吕俊. 基于分离结果信噪比估计与自适应调频网络的单通道语音分离技术[J]. 广东工业大学学报, 2023, 40(02): 45-54.
[3] 邱俊豪, 程志键, 林国怀, 任鸿儒, 鲁仁全. 具有执行器故障的非线性系统指定性能控制[J]. 广东工业大学学报, 2023, 40(02): 55-63.
[4] 陈靖宇, 吕毅. 基于脉冲神经网络的冷链制冷机结霜检测方法[J]. 广东工业大学学报, 2023, 40(01): 29-38.
[5] 叶文权, 李斯, 凌捷. 基于多级残差U-Net的稀疏SPECT图像重建[J]. 广东工业大学学报, 2023, 40(01): 61-67.
[6] 彭美春, 阳晨, 李君平, 叶伟斌, 黄文伟. 基于BP神经网络的车辆碳排放测算研究[J]. 广东工业大学学报, 2023, 40(01): 107-112.
[7] 刘洪伟, 林伟振, 温展明, 陈燕君, 易闽琦. 基于MABM的消费者情感倾向识别模型——以电影评论为例[J]. 广东工业大学学报, 2022, 39(06): 1-9.
[8] 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8.
[9] 彭积广, 肖涵臻. 模型预测控制下多移动机器人的跟踪与避障[J]. 广东工业大学学报, 2022, 39(05): 93-101.
[10] 黎耀东, 任志刚, 吴宗泽. 基于深度神经网络的注塑过程预测控制[J]. 广东工业大学学报, 2022, 39(05): 120-126,136.
[11] Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8.
[12] 郭心德, 丁宏强. 离散制造智能工厂场景的AGV路径规划方法[J]. 广东工业大学学报, 2021, 38(06): 70-76.
[13] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58.
[14] 马少鹏, 梁路, 滕少华. 一种轻量级的高光谱遥感图像分类方法[J]. 广东工业大学学报, 2021, 38(03): 29-35.
[15] 夏皓, 蔡念, 王平, 王晗. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(06): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!