广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (06): 68-72.doi: 10.12052/gdutxb.210049

• 综合研究 • 上一篇    下一篇

兼容5G毫米波n257和n258频段的氮化镓低噪声放大器设计研究

张耀1, 张志浩1,2, 章国豪1,2   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 河源广工大协同创新研究院, 广东 河源 517000
  • 收稿日期:2021-03-26 出版日期:2022-11-10 发布日期:2022-11-25
  • 通信作者: 张志浩(1989-),男,讲师,博士,主要研究方向为射频与微波集成电路设计,E-mail:zhihaozhang@gdut.edu.cn
  • 作者简介:张耀(1995-),男,硕士研究生,主要研究方向为射频集成电路设计
  • 基金资助:
    国家自然科学基金资助项目(61974035);广东省重点领域研发计划资助项目(2018B010115001);广东省“珠江人才计划”本土创新科研团队资助项目(2017BT01X168)

A GaN Low Noise Amplifier for 5G Millimeter Wave Band n257 and n258 Applications

Zhang Yao1, Zhang Zhi-hao1,2, Zhang Guo-hao1,2   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006 China;
    2. Heyuan Synergy Innovation Institute of GDUT, Heyuan 517000 China
  • Received:2021-03-26 Online:2022-11-10 Published:2022-11-25

摘要: 基于100 nm的氮化镓(Gallium Nitride, GaN) 高电子迁移率晶体管(High Electron Mobility Transistor, HEMT) 工艺设计了一款毫米波低噪声放大器(Low Noise Amplifier, LNA) 单片式微波集成电路(Monolithic Microwave Integrated Circuit, MMIC) 芯片。该款低噪声放大器采用三级级联的拓扑结构,对带宽、噪声和增益进行了联合优化设计。测试结果显示,工作频率范围覆盖24~30 GHz,可兼顾5G毫米波n257(26.5~29.5 GHz) 和n258(24.25~27.5 GHz) 频段,噪声系数可达到2.4~2.5 dB的水平,小信号增益在21.1~24.1 dB之间,输出1 dB功率压缩点大于14.4 dBm的水平。

关键词: 低噪声放大器, 氮化镓(GaN), 毫米波

Abstract: A millimeter wave low noise amplifier (LNA) fabricated in 100nm gallium nitride (GaN) high electron mobility transistor (HEMT) process is presented. With a three-stage cascade topology and an optimum concurrent design, this LNA, covering a frequency range from 24 to 30 GHz for 5G millimeter wave Band n257 and n258 applications, achieves low noise figure of 2.4~2.5 dB, small signal gain of 21.1~24.1 dB, and output 1 dB power compression point of greater than 14.4 dBm.

Key words: low noise amplifier, gallium nitride (GaN), millimeter wave

中图分类号: 

  • TN492
[1] TAKAGI K, MATSUSHITA K, KASHIWABARA Y, et al. Developing GaN HEMTs for Ka-band with 20W[C]//2010 IEEE Compound Semiconductor Integrated Circuit Symposium(CSICS) . Monterey, CA: IEEE, 2010: 1-4.
[2] 陈勇波, 周建军, 徐跃杭, 等. GaN高电子迁移率晶体管高频噪声特性的研究[J]. 微波学报, 2011, 27(6): 84-88.
CHEN Y B, ZHOU J J, XU Y H, et al. Research on high frequency noise characters of GaN HEMTs [J]. Journal of Microwaves, 2011, 27(6): 84-88.
[3] 贾晨阳, 彭龙新, 刘昊, 等. 毫米波GaAs单片限幅低噪声放大器[J]. 固体电子学研究与进展, 2019, 39(3): 169-173.
JIA C Y, PENG L X, LIU H, et al. Millimeter wave GaAs MMIC limiter low noise amplifier [J]. Research & Progress of SSE, 2019, 39(3): 169-173.
[4] KAHIL S A K, LAURENT S, QUÉRÉ R, et al. Linearity characterization of GaN HEMT technologies through innovative on-wafer multi-tone load-pull measurements[C]//2016 11th European Microwave Integrated Circuits Conference(EuMIC) . London, UK: IEEE, 2016: 37-40.
[5] ZHANG S, XU J, ZHENG P, et al. An 18-31GHz GaN-based LNA with 0.8dB minimum NF and high robustness [J]. IEEE Microwave and Wireless Components Letters, 2020, 30(9): 896-899.
[6] PACE L, CICCOGNANI W, COLANGELI S, et al. A Ka-band low-noise amplifier for space applications in a 100 nm GaN on Si technology[C]//2019 15th Conference on Ph. D Research in Microelectronics and Electronics(PRIME) . Lausanne, Switzerland: IEEE, 2019: 161-164.
[7] KIM S, KIM B, LEE Y, et al. A 28 GHz direct conversion receiver in 65 nm CMOS for 5G mmWave radio[C]//2019 International SoC Design Conference (ISOCC) . Jeju, Korea (South) : IEEE, 2019: 29-30.
[8] POURNAMY S, KUMAR N. Design of 60 GHz broadband LNA for 5G cellular using 65 nm CMOS technology[C]//2017 7th International Conference on Communication Systems and Network Technologies (CSNT) . Nagpur, India: 2017: 320-324.
[9] 吴少兵, 李建平, 李忠辉, 等. Ka波段GaN单片低噪声放大器研制[J]. 固体电子学研究与进展, 2018, 38(2): 81-84.
WU S B, LI J P, LI Z H, et al. Fabrication of Ka-band GaN MMIC LNA [J]. Research & Progress of SSE, 2018, 38(2): 81-84.
[10] 张浩, 王科平, 冷思明. 23~47 GHz宽带BiCMOS低噪声放大器设计[J]. 微波学报, 2019, 35(6): 45-48.
ZHANG H, WANG K P, LENG S M. Design of a 23~47 GHz Wideband BiCMOS low noise amplifier [J]. Journal of Microwaves, 2019, 35(6): 45-48.
[11] 王美兰, 陈炎桂, 胡楠. 一种用于5G终端的毫米波收发器前端芯片的研制[J]. 微波学报, 2020, 36(4): 86-89.
WANG M L, CHEN Y G, HU N. Research and development of a millimeter wave transceiver front end chip for 5G terminal application [J]. Journal of Microwaves, 2020, 36(4): 86-89.
[12] 张忠皓, 周瑶, 李福昌, 等. 5G毫米波产业发展现状分析[J]. 邮电设计技术, 2021(2): 37-41.
ZHANG Z H, ZHOU Y, LI F C, et al. Analysis on the development status of 5G millimeter wave industry [J]. Designing Techniques of Posts and Telecommunications, 2021(2): 37-41.
[13] FERREYRA R A, SUZUKI A, KAZUMOTO T, et al. n++ GaN regrowth technique using pico-second laser ablation to form non-alloy ohmic contacts [J]. IEEE Electron Device Letters, 2017, 38(8): 1079-1081.
[14] DARABI H. 射频集成电路及系统设计[M]. 北京: 机械工业出版社, 2019: 93-97.
[15] NIKANDISH G, MEDI A. Design and analysis of broadband darlington amplifiers with bandwidth enhancement in GaAs pHEMT technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(8): 1705-1715.
[1] 衡园, 吴建成, 杨志军. 基于FPGA的控制算法定点化设计[J]. 广东工业大学学报, 2020, 37(03): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!