广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (02): 15-21.doi: 10.12052/gdutxb.220079
谢国波1, 林立1, 林志毅1, 贺笛轩1, 文刚2
Xie Guo-bo1, Lin Li1, Lin Zhi-yi1, He Di-xuan1, Wen Gang2
摘要: 针对输电线路绝缘子爆裂缺陷检测中缺陷目标小、背景复杂多样导致检测精度低的问题,提出了一种基于YOLOv4改进的检测算法YOLOv4-MP。首先,为减少复杂背景的干扰,在特征提取网络中嵌入Shuffle Attention注意力模块,使模型能够提取到更加有效的特征信息。其次,为增强特征融合的效果,在空间金字塔池化中引入带空洞的池化层,能够有效增大感受野。最后,为减少低层信息的丢失,采用Mish函数作为路径增强网络的激活函数。实验结果表明,YOLOv4-MP的平均精度均值(Mean Average Precision, mAP) 达到了93.60%,比YOLOv4算法提升了6.37%。与常用的检测算法相比,YOLOv4-MP具有更好的检测性能,对于绝缘子爆裂缺陷检测具有较大应用价值。
中图分类号:
[1] SANYAL S, ASLAM F, KIM T, et al. Deterioration of porcelain insulators utilized in overhead transmission lines: a review [J]. Transactions on Electrical and Electronic Materials, 2020, 21(1): 16-21. [2] MIAO X, LIU X, CHEN J, et al. Insulator detection in aerial images for transmission line inspection using single shot multibox detector [J]. IEEE Access, 2019, 7: 9945-9956. [3] CHEN M H, TIAN Y N, XING S Y, et al. Environment perception technologies for power transmission line inspection robots [J]. Journal of Sensors, 2021, 2021(2): 1-16. [4] 杨罡, 孙昌雯, 王大伟, 等. 基于无人机前端和SSD算法的输电线路部件检测模型对比研究[J]. 太原理工大学学报, 2020, 51(2): 212-219. YANG G, SUN C W, WANG D W, et al. Comparative study of transmission line component detection models based on UAV front end and SSD algorithm [J]. Journal of Taiyuan University of Technology, 2020, 51(2): 212-219. [5] LIU X, MIAO X, JIANG H, et al. Data analysis in visual power line inspection: an in-depth review of deep learning for component detection and fault diagnosis [J]. Annual Reviews in Control, 2020, 50: 253-277. [6] TAN P, LI X F, XU J M, et al. Catenary insulator defect detection based on contour features and gray similarity matching [J]. Journal of Zhejiang University - Science A:Applied Physics & Engineering, 2020, 21(1): 64-73. [7] 闫丽梅, 刘永强, 徐建军, 等. 基于Grabcut分割和填充物面积判别的复合绝缘子断串诊断[J]. 电力系统保护与控制, 2021, 49(22): 114-119. YAN L M, LIU Y Q, XU J J, et al. Broken string diagnosis of composite insulator based on Grabcut segmentation and filler area discrimination [J]. Power System Protection and Control, 2021, 49(22): 114-119. [8] ZHAI Y, CHEN R, YANG Q, et al. Insulator fault detection based on spatial morphological features of aerial images [J]. IEEE Access, 2018, 6: 35316-35326. [9] 王银立, 闫斌. 基于视觉的绝缘子“掉串”缺陷的检测与定位[J]. 计算机工程与设计, 2014, 35(2): 583-587. WANG Y L, YAN B. Vision based detection and location for cracked insulator [J]. Computer Engineering and Design, 2014, 35(2): 583-587. [10] 姜云土, 韩军, 丁建, 等. 基于多特征融合的玻璃绝缘子识别及自爆缺陷的诊断[J]. 中国电力, 2017, 50(5): 52-58. JIANG Y T, HAN J, DING J, et al. The identification and diagnosis of self-blast defects of glass insulators based on multi-feature fusion [J]. Electric Power, 2017, 50(5): 52-58. [11] ZHAI Y, WANG D, ZHANG M, et al. Fault detection of insulator based on saliency and adaptive morphology [J]. Multimedia Tools and Applications, 2017, 76(9): 12051-12064. [12] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(4): 52-58. HUANG J H, WANG Z Y. A Research on deep learning object detection algorithm based on feature fusion [J]. Journal of Guangdong University of Technology, 2021, 38(4): 52-58. [13] ZHAO W, XU M, CHENG X, et al. An insulator in transmission lines recognition and fault detection model based on improved faster RCNN [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8. [14] 李鑫, 刘帅男, 杨桢, 等. 基于改进Cascade R-CNN的输电线路多目标检测[J]. 电子测量与仪器学报, 2021, 35(10): 24-32. LI X, LIU S N, YANG Z, et al. Multi-target detection of transmission lines based on improved cascade R-CNN [J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 24-32. [15] 赵文清, 张海明, 徐敏夫. 面向改进尺度缩放网络的绝缘子识别[J]. 中国图象图形学报, 2021, 26(11) : 2561-2570. ZHAO W Q, ZHANG H M, XU M F. Insulator recognition based on an improved scale-transferrable network[J] Journal of Image and Graphics, 2021, 26(11) : 2561-2570. [16] LIU J, LIU C, WU Y, et al. An improved method based on deep learning for insulator fault detection in diverse aerial images [J]. Energies, 2021, 14(14): 4365. [17] ZHENG R, ZHU L, HU T, et al. Detection of fault insulator of power transmission line based on region-CNN[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC) . Zhanjiang: IEEE, 2020: 73-76. [18] LIAO G P, YANG G J, TONG W T, et al. Study on power line insulator defect detection via improved faster region-based convolutional neural network[C]//2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT) . Dalian: IEEE, 2019: 262-266. [19] 唐小煜, 黄进波, 冯洁文, 等. 基于 U-net 和 YOLOv4 的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报 (自然科学版) , 2020, 52(6): 15-21. TANG X Y, HUANG J B, FENG J W, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4 [J]. Journal of South China Normal University (Natural Science Edition) , 2020, 52(6): 15-21. [20] 党宏社, 薛萌, 郭琴. 基于改进的YOLOv4绝缘子掉片故障检测方法[J]. 电瓷避雷器, 2022, 65(1): 211-218. DANG H S, XUE M, GUO Q. Insulator dropout fault detection method based on improved YOLOv4 [J]. Insulators and Surge Arrester, 2022, 65(1): 211-218. [21] ZHANG Q L, YANG Y B. Sa-net: Shuffle attention for deep convolutional neural networks[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . [S. l. ]: IEEE, 2021: 2235-2239. [22] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV) . Munich: [s. n. ], 2018: 116-131. [23] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. |
[1] | 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8. |
[2] | 杨积升, 章云, 李东. 点云目标检测残差投票网络[J]. 广东工业大学学报, 2022, 39(01): 56-62. |
[3] | 张国生, 冯广, 李东. 基于姿态表示的航空影像旋转目标检测网络[J]. 广东工业大学学报, 2021, 38(05): 40-47. |
[4] | 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58. |
[5] | 马少鹏, 梁路, 滕少华. 一种轻量级的高光谱遥感图像分类方法[J]. 广东工业大学学报, 2021, 38(03): 29-35. |
[6] | 夏皓, 蔡念, 王平, 王晗. 基于多分辨率学习卷积神经网络的磁共振图像超分辨率重建[J]. 广东工业大学学报, 2020, 37(06): 26-31. |
[7] | 战荫伟, 朱百万, 杨卓. 车辆颜色和型号识别算法研究与应用[J]. 广东工业大学学报, 2020, 37(04): 9-14. |
[8] | 曾碧卿, 韩旭丽, 王盛玉, 徐如阳, 周武. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报, 2019, 36(04): 10-17. |
[9] | 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(04): 18-23. |
[10] | 谢岩, 刘广聪. 基于编解码器模型的车道识别与车辆检测算法[J]. 广东工业大学学报, 2019, 36(04): 36-41. |
[11] | 杨孟军, 苏成悦, 陈静, 张洁鑫. 基于卷积神经网络的视觉闭环检测研究[J]. 广东工业大学学报, 2018, 35(05): 31-37. |
[12] | 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26. |
[13] | 申小敏, 李保俊, 孙旭, 徐维超. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(06): 77-84. |
[14] | 孙伟, 钟映春, 谭志, 连伟烯. 多特征融合的室内场景分类研究[J]. 广东工业大学学报, 2015, 32(1): 75-79. |
[15] | 陈世文1, 2, 蔡念2, 肖明明3. 基于高斯混合模型和canny算法的运动目标检测[J]. 广东工业大学学报, 2011, 28(3): 87-91. |
|