广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (04): 36-41.doi: 10.12052/gdutxb.180175
谢岩, 刘广聪
Xie Yan, Liu Guang-cong
摘要: 针对无人驾驶车辆环境感知问题,通过编码器提取共享图像特征,再通过解码器来实现语义分割、分类和目标检测模块,并应用在车道识别和车辆检测上.在无人驾驶中,任务的实时性非常关键,这种共享编码器模型能一定程度上提高任务实时性.实验结果表明,该模型的语义分割在KITTI数据集上的平均精度达到93.89%,比最优性能提升0.53%,联合检测速度达到25.43 Hz.
中图分类号:
[1] KRIZHEVSKY A, SUTSKEVE R I, HINTONN G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6):84-90 [2] WU Z, SHEN C, HENGEL A. Wider or deeper:revisiting the resnet model for visual recognition[J]. arXiv preprint arXiv:1611.10080, 2016 [3] HARIHARAN B, ARBELA Z P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:297-312. [4] 郭继舜. 面向自动驾驶的语义分割和目标检测技术[D]. 成都:电子科技大学, 2018. [5] HOLSCHNEIDER M, KRONLANDMARTINET R, MORLET J, et al. A real-time algorithm for signal analysis with the help of the wavelet transform[C]//Wavelets. Berlin, Heidelberg:Springer, 1990:286-297. [6] RUSSAKOVSK, YUSSAKOVSKY O, DENG J, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252 [7] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. In las Vegas:IEEE, 2016:770-778. [8] 陈良甫, 杨曾. 一种基于残差网络的多任务模型[J]. 中国集成电路, 2017(8):64-71 CHEN L F, YANG Z. A residual network based multi-task model[J]. China Integrated Circuit, 2017(8):64-71 [9] MA W C, WANG S, BRUBAKER M A, et al. Find your way by observing the sun and other semantic cues[C]//Robotics and Automation (ICRA), 2017 IEEE International Conference on. Singapore:IEEE, 2017:6292-6299. [10] GIUSTI A, CIREŞAN D C, MASCI J, et al. Fast image scanning with deep max-pooling convolutional neural networks[C]//2013 IEEE International Conference on Image Processing. Melbourne, Australia:IEEE, 2013:4034-4038. [11] LI H, ZHAO R, WANG X. Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification[J]. arXiv preprint arXiv:1412.4526, 2014 [12] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Massachusetts:IEEE, 2015:3431-3440. [13] ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]//Computer Vision & Pattern Recognition. San Francisco:IEEE Computer Society, 2010. [14] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916 [15] HOSANG J, BENENSON R, DOLLÁR P, et al. What makes for effective detection proposals?[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(4):814-830 [16] Ren S Q, He K M, GIRSHICK R, et al. Faster r-cnn:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149 [17] ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Canada:NIPS, 2014:2147-2154. [18] LI H, ZHAO R, WANG X. Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification[J]. arXiv preprint arXiv:1412.4526, 2014 [19] SERMANET P, EIGEN D, ZHANG X, et al. Overfeat:integrated recognition, localization and detection using convolutional networks[J]. arXiv preprint arXiv:1312.6229, 2013 [20] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics:The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11):1231-1237 [21] FRITSCH J, KUEHNL T, GEIGER A. A New Performance Measure and Evaluation Benchmark for Road Detection Algorithms[C]//IEEE Int. Conf. on Intelligent Transportation Systems (ITSC). The Hague:IEEE, 2013. [22] URTASUN R, LENZ P, GEIGER A. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2012. [23] KINGMA D P, BA J. Adam:a method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014 |
[1] | 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21. |
[2] | 王体春, 许枫魁. 基于可拓理论的无人驾驶汽车内饰设计[J]. 广东工业大学学报, 2022, 39(02): 1-11. |
[3] | 杨积升, 章云, 李东. 点云目标检测残差投票网络[J]. 广东工业大学学报, 2022, 39(01): 56-62. |
[4] | 杨运龙, 梁路, 滕少华. 一种双路网络语义分割模型[J]. 广东工业大学学报, 2022, 39(01): 63-70. |
[5] | 张国生, 冯广, 李东. 基于姿态表示的航空影像旋转目标检测网络[J]. 广东工业大学学报, 2021, 38(05): 40-47. |
[6] | 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58. |
[7] | 陈世文1, 2, 蔡念2, 肖明明3. 基于高斯混合模型和canny算法的运动目标检测[J]. 广东工业大学学报, 2011, 28(3): 87-91. |
[8] | 梁志勇; 易珺; 唐平; 刘文娟; . 帧差法在仓库监控智能跟踪系统中的应用[J]. 广东工业大学学报, 2005, 22(1): 47-52. |
|