广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (04): 36-41.doi: 10.12052/gdutxb.180175

• 综合研究 • 上一篇    下一篇

基于编解码器模型的车道识别与车辆检测算法

谢岩, 刘广聪   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2018-12-24 出版日期:2019-06-18 发布日期:2019-05-31
  • 作者简介:谢岩(1993-),男,硕士研究生,主要研究方向为无人驾驶.
  • 基金资助:
    广州市科技计划项目(201508020030)

Lane Recognition and Vehicle Detection Algorithm Based on Code-model

Xie Yan, Liu Guang-cong   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-12-24 Online:2019-06-18 Published:2019-05-31

摘要: 针对无人驾驶车辆环境感知问题,通过编码器提取共享图像特征,再通过解码器来实现语义分割、分类和目标检测模块,并应用在车道识别和车辆检测上.在无人驾驶中,任务的实时性非常关键,这种共享编码器模型能一定程度上提高任务实时性.实验结果表明,该模型的语义分割在KITTI数据集上的平均精度达到93.89%,比最优性能提升0.53%,联合检测速度达到25.43 Hz.

关键词: 无人驾驶, 编解码器模型, 语义分割, 目标检测, 带孔卷积

Abstract: Aiming at the problem of environment perception of self-driving, this paper semantic segmentation, classification and target detection module are realized by the code model, which is applied to lane recognition and vehicle detection. Shared image features are extracted by encoder, and three different functions are realized by decoder. This Shared encoder model can improve the real-time performance of tasks. In self-driving, the real-time performance of tasks is the key. Experimental results show that the average precision of semantic segmentation of this model on KITTI dataset reaches 93.89%, which is 0.53% higher than the optimal performance, and the joint detection speed reaches 25.43 Hz.

Key words: self-driving, code-model, semantic segmentation, target detection, atrous convolution

中图分类号: 

  • TP391.4
[1] KRIZHEVSKY A, SUTSKEVE R I, HINTONN G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6):84-90
[2] WU Z, SHEN C, HENGEL A. Wider or deeper:revisiting the resnet model for visual recognition[J]. arXiv preprint arXiv:1611.10080, 2016
[3] HARIHARAN B, ARBELA Z P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:297-312.
[4] 郭继舜. 面向自动驾驶的语义分割和目标检测技术[D]. 成都:电子科技大学, 2018.
[5] HOLSCHNEIDER M, KRONLANDMARTINET R, MORLET J, et al. A real-time algorithm for signal analysis with the help of the wavelet transform[C]//Wavelets. Berlin, Heidelberg:Springer, 1990:286-297.
[6] RUSSAKOVSK, YUSSAKOVSKY O, DENG J, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252
[7] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. In las Vegas:IEEE, 2016:770-778.
[8] 陈良甫, 杨曾. 一种基于残差网络的多任务模型[J]. 中国集成电路, 2017(8):64-71 CHEN L F, YANG Z. A residual network based multi-task model[J]. China Integrated Circuit, 2017(8):64-71
[9] MA W C, WANG S, BRUBAKER M A, et al. Find your way by observing the sun and other semantic cues[C]//Robotics and Automation (ICRA), 2017 IEEE International Conference on. Singapore:IEEE, 2017:6292-6299.
[10] GIUSTI A, CIREŞAN D C, MASCI J, et al. Fast image scanning with deep max-pooling convolutional neural networks[C]//2013 IEEE International Conference on Image Processing. Melbourne, Australia:IEEE, 2013:4034-4038.
[11] LI H, ZHAO R, WANG X. Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification[J]. arXiv preprint arXiv:1412.4526, 2014
[12] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Massachusetts:IEEE, 2015:3431-3440.
[13] ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]//Computer Vision & Pattern Recognition. San Francisco:IEEE Computer Society, 2010.
[14] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916
[15] HOSANG J, BENENSON R, DOLLÁR P, et al. What makes for effective detection proposals?[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(4):814-830
[16] Ren S Q, He K M, GIRSHICK R, et al. Faster r-cnn:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149
[17] ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Canada:NIPS, 2014:2147-2154.
[18] LI H, ZHAO R, WANG X. Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification[J]. arXiv preprint arXiv:1412.4526, 2014
[19] SERMANET P, EIGEN D, ZHANG X, et al. Overfeat:integrated recognition, localization and detection using convolutional networks[J]. arXiv preprint arXiv:1312.6229, 2013
[20] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics:The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11):1231-1237
[21] FRITSCH J, KUEHNL T, GEIGER A. A New Performance Measure and Evaluation Benchmark for Road Detection Algorithms[C]//IEEE Int. Conf. on Intelligent Transportation Systems (ITSC). The Hague:IEEE, 2013.
[22] URTASUN R, LENZ P, GEIGER A. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2012.
[23] KINGMA D P, BA J. Adam:a method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014
[1] 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21.
[2] 王体春, 许枫魁. 基于可拓理论的无人驾驶汽车内饰设计[J]. 广东工业大学学报, 2022, 39(02): 1-11.
[3] 杨积升, 章云, 李东. 点云目标检测残差投票网络[J]. 广东工业大学学报, 2022, 39(01): 56-62.
[4] 杨运龙, 梁路, 滕少华. 一种双路网络语义分割模型[J]. 广东工业大学学报, 2022, 39(01): 63-70.
[5] 张国生, 冯广, 李东. 基于姿态表示的航空影像旋转目标检测网络[J]. 广东工业大学学报, 2021, 38(05): 40-47.
[6] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58.
[7] 陈世文1, 2, 蔡念2, 肖明明3. 基于高斯混合模型和canny算法的运动目标检测[J]. 广东工业大学学报, 2011, 28(3): 87-91.
[8] 梁志勇; 易珺; 唐平; 刘文娟; . 帧差法在仓库监控智能跟踪系统中的应用[J]. 广东工业大学学报, 2005, 22(1): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!