广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (03): 74-82.doi: 10.12052/gdutxb.220190

• • 上一篇    下一篇

高电压电解液添加剂在钴酸锂/石墨软包电池中的作用机理

王雅婷1, 李健辉2, 叶海平2, 刘军1, 施志聪1   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510006;
    2. 华南师范大学 化学学院, 广东 广州 510006
  • 收稿日期:2022-12-20 出版日期:2023-05-25 发布日期:2023-06-08
  • 通信作者: 刘军(1986-),男,副教授,主要研究方向为锂离子电池、锂硫电池、电化学储能材料与器件,E-mail:junliu23@gdut.edu.cn;施志聪(1976-),男,教授,主要研究方向为新能源材料、新型电池、电化学测试技术,E-mail:zhicong@gdut.edu.cn
  • 作者简介:王雅婷(1990-),女,博士研究生,主要研究方向为电解液的设计与理论计算
  • 基金资助:
    科技部重点研发计划战略性科技创新合作项目(2022YFE0202400);珠海市科技创新局产学研合作项目(ZH22017001200059PWC);广东省科技厅国际合作项目(2019A050510043)

The Working Mechanism of Additive in High Voltage Electrolyte for Lithium Cobaltate/Graphite Pouch Cell

Wang Ya-ting1, Li Jian-hui2, Ye Hai-ping2, Liu Jun1, Shi Zhi-cong1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Chemistry, South China Normal University, Guangzhou 510006, China
  • Received:2022-12-20 Online:2023-05-25 Published:2023-06-08

摘要: 1,2,3-三(2-氰氧基)丙烷(1,2,3-Tris(2-cyanoethoxy) propane,TPPN)作为一种新的电解液添加剂,可应用于4.55 V高电压钴酸锂(LiCoO2) /石墨软包电池。通过对比不含和含有TPPN添加剂的锂电池的循环性能,发现加入质量分数为2%的TPPN能大幅提高电池性能。3.00~4.55 V下以1C/1C倍率充放电,含有2%TPPN的电池在25℃下循环900周容量保持率为86.4%,而未添加TPPN的样品仅为8.7%。从理论计算和线性扫描数据可知,TPPN较电解液溶剂优先分解。从LiCoO2表面上X射线光电子能谱的N 1s谱可知,TPPN在钴酸锂表面形成界面膜。从阻抗数据可知,该界面膜具有低阻抗和高稳定性质。从理论计算、LiCoO2表面上扫描、透射电镜、X射线衍射谱和石墨表面上X射线光电子能谱的Co 2p谱可知,该界面膜能有效抑制电解液分解和钴离子的溶出,确认了界面膜的高稳定性质。

关键词: 1,2,3-三(2-氰氧基) 丙烷(TPPN), 电解液添加剂, 高电压, 钴酸锂/石墨软包电池, 循环性能

Abstract: 1,2,3-Tris (2-cyanoethoxy) propane (TPPN) as a new electrolyte additive has been investigated in 4.55 V high voltage lithium cobaltate (LiCoO2) /graphite pouch cells. By comparing the cycle performance of cells without and with TPPN, it is found that the addition of TPPN can improve the performance, and the optimal weight proportion is 2%. At 3.00-4.55 V and 1C/1C, the cells with 2%TPPN has a capacity retention rate of 86.4% at 25℃ for 900 cycles compared with the capacity retention rate of 8.7% that without 2%TPPN. According to the theoretical calculation and linear sweep voltammetry, the decomposition of TPPN is preferred to that of the electrolyte solvent. It can be seen from N 1s spectra from X-ray photoelectron spectroscopy on LiCoO2 surface that TPPN forms an interfacial film on the LiCoO2 surface. It can be seen from the impedance data that the interface film formed by TPPN has low impedance and high stability. From theoretical calculation, scanning, transmission electron microscopy, X-ray diffraction on LiCoO2 surface and Co 2p spectra from X-ray photoelectron spectroscopy on graphite surface, it is revealed that the interface film formed by TPPN can effectively suppress the decomposition of electrolyte and the dissolution of cobalt ions, confirming the high stability of the interface film formed by TPPN.

Key words: 1,2,3-Tris (2-cyanoethoxy) propane (TPPN), electrolyte additive, high voltage, lithium cobaltate/graphite pouch cell, cycle performance

中图分类号: 

  • TM912
[1] LI B, XIA D G. Anionic redox in rechargeable lithium batteries [J]. Advanced Materials, 2017, 29(28): 1701054.
[2] SUN Z Y, ZHOU H B, LUO X H, et al. Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: lithium 4-benzonitrile trimethyl borate [J]. Journal of Power Sources, 2021, 503: 230033.
[3] WANG L L, CHEN B B, MA J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density [J]. Chemical Society Reviews, 2018, 47: 6505-6602.
[4] YANG X R, LIN M, ZHENG G R, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy [J]. Advanced Functional Materials, 2020, 30(43): 2004664.
[5] LI W D, DOLOCAN A, OH P, et al. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries [J]. Nature Communications, 2017, 8: 14589.
[6] XU K. Electrolytes and interphases in Li-ion batteries and beyond [J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[7] LI J H, XING L D, CHEN J W, et al. Improving high voltage interfacial and structural stability of layered lithium-rich oxide cathode by using a boracic electrolyte additive [J]. Journal of The Electrochemical Society, 2016, 163: A2258-A2264.
[8] ZHENG X W, WANG X S, CAI X, et al. Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure [J]. ACS Applied Materials & Interfaces, 2016, 8: 30116-30125.
[9] ZHOU S Y, HONG S G, YU L, et al. Effect of adiponitrile on performance of high-voltage Li-ion battery [J]. Battery Bimonthly, 2016, 46(3): 137-139.
[10] HAN J G, KIM K, CHOI N S. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries [J]. Advanced Materials, 2019, 31(20): 1804822.
[11] HONG K G, ZHOU S Y, YU L, et al. Effect of ethylene glycol bis(propionitrile) ether on high-voltage Li-ion battery [J]. Battery Bimonthly, 2017, 47(1): 35-38.
[12] FRISH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[Z]. Revision A. Gaussian, Inc., Wallingford, CT, 2009.
[13] WANG Y T, XING L D, LI W S, et al. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory [J]. The Journal of Physical Chemistry Letters, 2013, 4: 3992-3999.
[14] YE C C, TU W Q, YIN L M, et al. Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes [J]. Journal of Materials Chemistry A, 2018, 6: 17642-17652.
[15] TRASATTI S. The absolute electrode potential: an explanatory note [J]. Pure and Applied Chemistry, 1986, 58: 955-966.
[16] WU S P, LIN Y L, XING L D, et al. Stabilizing LiCoO2/graphite at high voltages with an electrolyte additive [J]. ACS Applied Materials & Interfaces, 2019, 11: 17940-17951.
[17] WANG K, XING L D, ZHU Y M, et al. A comparative study of Si-containing electrolyte additives for lithium ion battery: which one is better and why is it better [J]. Journal of Power Sources, 2017, 342: 677-684.
[18] MOMMA T, MATSUNAGA M, MUKOYAMA D, et al. Ac impedance analysis of lithium ion battery under temperature control [J]. Journal of Power Sources, 2012, 216: 304-307.
[19] LIAO X L, HUANG Q M, MAI S W, et al. Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential [J]. Journal of Power Sources, 2015, 286: 551-556.
[20] LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries [J]. Advanced Energy Materials, 2018, 8: 1800802.
[21] LI T T, LIN J L, XING L D, et al. Insight into the contribution of nitriles as electrolyte additives to the improved performances of the LiCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2022, 13: 8801-8807.
[1] 李新喜, 袁晓娇, 张国庆, 张新河, 张磊. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!