广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (03): 99-104.doi: 10.12052/gdutxb.220048

• • 上一篇    下一篇

基于四叉树滤波的InSAR矿区形变监测与分析

杨小鸽1, 王华1, 柏俊2, 吴希文1, 李廷俊3, 柏玉超3, 皮廷亮3   

  1. 1. 广东工业大学 土木与交通工程学院, 广东 广州 510006;
    2. 广州海川信息科技有限公司, 广东 广州 510300;
    3. 云南华联锌铟股份有限公司, 云南 文山 663700
  • 收稿日期:2022-03-15 出版日期:2023-05-25 发布日期:2023-06-08
  • 通信作者: 王华(1978-),男,教授,博士,主要研究方向为InSAR、大陆构造与地震周期,E-mail:ehwang@163.com
  • 作者简介:杨小鸽(1994-),女,硕士研究生,主要研究方向为InSAR数据处理,E-mail:1107813115@qq.com
  • 基金资助:
    国家重点研发计划资助项目(2017YFC1500501);广东省自然科学基金资助项目(2021A1515011483)

InSAR Deformation Monitoring and Analysis of Mining Area Based on Quadtree Filtering

Yang Xiao-ge1, Wang Hua1, Bai jun2, Ng Alex Hay-Man1, Li Ting-jun3, Bai Yu-chao3, Pi Ting-liang3   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou Haichuan Information Technology Co., Ltd., Guangzhou 510300, China;
    3. Yunnan Hualian Zinc and Indium Co., Ltd., Wenshan 663700, China
  • Received:2022-03-15 Online:2023-05-25 Published:2023-06-08

摘要: 时变去相干等因素导致矿区形变干涉图中存在大量的噪声,采用四叉树滤波方法能滤除InSAR解缠相位中的离散噪声点,从而获得干净的形变结果。本文以云南某露天开采的矿区为例,探讨了最小划分窗口与粗差阈值对四叉树滤波效果的影响,并采用2019~2021年间的Sentinel-1卫星数据计算了该矿区的地表形变时间序列。结果表明,该矿区在监测期间存在显著的地表形变,大致集中在3个区域,形变特征在时域上既有抬升也有沉降,总体呈波浪状,最大沉降量达到67.3 mm,最大抬升量达79.3 mm。InSAR监测结果与32个地面测量机器人41个时段的结果差异为±10.9 mm。

关键词: InSAR, 四叉树滤波, 矿区形变, 时间序列分析

Abstract: Due to factors such as loss of coherence between repeated SAR acquisitions, the interferograms are often very noisy. The quadtree filter can remove such discrete noise in unwrapped interferograms and obtain clean deformation results. A mining area in Yunnan is investigated, discussing how the minimum division window and the gross error threshold affect the performance of quadtree filtering. The surface deformation time series of the mining area is obtained using Sentinel-1 satellite data from 2019 to 2021. The results show that the mining area has significant surface deformation during our monitoring period, focusing mainly on three regions with both uplift and subsidence. The deformation time series present wave-like variations in the time domain. The maximum incremental subsidence and uplift are up to 67.3 and 79.4 mm in 12 days, respectively. The difference is $ \pm 10.9\;\mathrm{m}\mathrm{m} $ between InSAR and 41 repeated observations from 32 ground-based total stations.

Key words: InSAR, quadtree filtering, mining deformation, time series analysis

中图分类号: 

  • TD176
[1] DAI Y W, NG A H M, WANG H, et al. Modeling-assisted InSAR phase-unwrapping method for mapping mine subsidence [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1059-1063.
[2] NG A H M, GE L L, DU Z Y, et al. Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data [J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61: 92-103.
[3] YUAN M Z, LI M, LIU H, et al. Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions [J]. Remote Sensing, 2021, 13(16): 3107.
[4] 吴海翔. InSAR矿区沉降监测关键技术研究[D]. 广州: 广东工业大学, 2015.
[5] YANG Z F, LI Z W, ZHU J J, et al. Use of SAR/InSAR in mining deformation monitoring, parameter inversion, and forward predictions: a review [J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1): 71-90.
[6] GONG C G, LEI S G, BIAN Z F, et al. Using time series InSAR to assess the deformation activity of open-pit mine dump site in severe cold area [J]. Journal of Soils and Sediments, 2021, 21(11): 3717-3732.
[7] JONSSON S, ZEBKER H, SEGALL P, et al. Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements [J]. Bulletin of The Seismological Society of America, 2002, 92(4): 1377-1389.
[8] GAO H, LIAO M S, FENG G C. An improved quadtree sampling method for InSAR seismic deformation inversion [J]. Remote Sensing, 2021, 13(9): 1678.
[9] PENG L C, WANG H, NG A H M, et al. SAR offset tracking based on feature points[J/OL]. Frontiers in Earth Science, 2022. https://doi.org/10.3389/feart.2021.724965.
[10] 彭林才. 基于特征点的偏移跟踪算法及其应用[D]. 广州: 广东工业大学, 2020.
[11] ROSEN P A, GURROLA E, SACCO G F, et al. The InSAR scientific computing environment[C]// 9th European Conference on Synthetic Aperture Radar. Nuremberg: VDE, 2012.
[12] GOLDSTEIN R M, WERNER C L. Radar interferogram filtering for geophysical applications [J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.
[13] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission [J]. Reviews of Geophysics, 2007, 45(2): 2005RG000183.
[14] GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite radar interferometry: Two-dimensional phase unwrapping [J]. Radio Science, 1988, 23(4): 713-720.
[15] WANG H, WRIGHT T J, YU Y, et al. InSAR reveals coastal subsidence in the Pearl River Delta, China [J]. Geophysical Journal International, 2012, 191(3): 1119-1128.
[1] 陈佳炜, 吴希文, 王华, 陈炳杰. 基于双极化时序InSAR技术的地表形变监测[J]. 广东工业大学学报, 2022, 39(03): 77-82.
[2] 陈文彬, 王华, 吴希文. 1"与3"SRTM DEM在珠江三角洲地区InSAR形变监测中的应用效果比较[J]. 广东工业大学学报, 2018, 35(02): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!