广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 32-43.doi: 10.12052/gdutxb.230151

• 精密制造技术与装备 • 上一篇    下一篇

硬脆材料超精密磨削技术研究进展综述

夏江南, 阎秋生, 潘继生, 雒梓源, 汪涛   

  1. 广东工业大学 机电工程学院, 广东 广州 510006
  • 收稿日期:2023-09-25 出版日期:2023-11-25 发布日期:2023-11-08
  • 通信作者: 潘继生(1980-),男,教授,博士,主要研究方向为光学材料超精密加工、机械传动装置与高性能传动系统设计,E-mail:panjisheng@gdut.edu.cn
  • 作者简介:夏江南(1999-),男,硕士研究生,主要研究方向为光电晶片超精密磨削理论与技术等
  • 基金资助:
    国家重点研发计划项目(2023YFE0204400);国家自然科学基金资助项目(52075102);广东省基础与应用基础研究项目 (2023A1515010922)

State-of-the-art of Ultra-precision Grinding Technology for Hard and Brittle Materials

Xia Jiang-nan, Yan Qiu-sheng, Pan Ji-sheng, Luo Zi-yuan, Wang Tao   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-09-25 Online:2023-11-25 Published:2023-11-08

摘要: 硬脆材料因其优异的物理与化学性质广泛应用于5G通讯、航空航天、电子电力等领域,高效率的超精密磨削技术是其加工流程中的重要一环。为了提高硬脆材料加工质量,需要对超精密磨削技术进行系统化的深入研究。本文从超精密磨削装备设计优化的角度出发,对自旋转磨削、双面磨削和磨抛一体化3种磨削方法的原理与机床设备进行了详细说明,介绍了超硬磨粒砂轮的制备、砂轮磨损检测与分析、砂轮修整技术的研究进展;从压痕/划痕实验、纳米磨削实验、模拟仿真分析3个角度对硬脆材料的磨削机理进行了深入探索;进一步总结了硬脆材料表面粗糙度及表面形貌、亚表面损伤、面形精度的控制方法。分析了硬脆材料超精密磨削的重点研究方向与发展趋势,为后续硬脆材料超精密磨削技术的研究提供了指导。

关键词: 硬脆材料, 超精密磨削, 磨削设备, 磨削机理, 表面质量

Abstract: Hard and brittle materials are extensively utilized in various fields, such as 5G communication, aerospace, and electronic power, owing to their exceptional physical and chemical properties. High-efficiency ultra-precision grinding technology plays a crucial role in their processing. Conducting systematic and thorough research on ultra-precision grinding technology is essential to enhance the processing quality of these materials. A detailed description is presented for three grinding methods: self-rotating grinding, double-sided grinding, and grinding-polishing integration, from the perspective of designing and optimizing ultra-precision grinding equipment. Furthermore, research progress is introduced on the preparation, wear detection, and dressing of super-hard abrasive grinding wheels. A thorough analysis is also provided of the grinding mechanism of hard and brittle materials, considering aspects such as indentation and scratch, nano-grinding, and simulation analysis. The control methods for surface roughness, surface morphology, subsurface damage, and surface shape accuracy of hard and brittle materials are also summarized.

Key words: hard and brittle materials, ultra-precision grinding, grinding equipment, grinding mechanism, surface quality

中图分类号: 

  • TG580
[1] 宿彦京, 杨明理, 祝伟丽, 等. 新材料研发智能化技术发展研究[J]. 中国工程科学, 2023, 25(3): 161-169.
SU Y J, YANG M L, ZHU W L, et al. Development of key technologies for intelligent research and development of new materials [J]. Strategic Study of CAE, 2023, 25(3): 161-169.
[2] ESWARAPPA P S, POLLOCK T M, RAABE D, et al. Materials for extreme environments [J]. Nature Reviews Materials, 2023, 8(2): 81-88.
[3] 王丽荣, 石澎. 精密模压用低熔点光学玻璃的发展概况[J]. 玻璃搪瓷与眼镜, 2022, 50(7): 1-13.
WANG L R, SHI P. Development of low-melting optical glass for precision molding [J]. Glass & Enamel, 2022, 50(7): 1-13.
[4] 王耀祥. 光学玻璃的发展及其应用[J]. 应用光学, 2005(5): 61-66.
WANG Y X. Development and applications of optical glasses [J]. Journal of Applied Optics, 2005(5): 61-66.
[5] GUPTA C, PASAYAT S S. Vertical GaN and vertical Ga2O3 power transistors: status and challenges [J]. Physica Status Solidi (A), 2022, 219(7): 2100659.
[6] MANE S. Semiconductor technologies [J]. International Journal of All Research Education and Scientific Methods, 2022, 10: 76-82.
[7] LAKHDAR Y, TUCK C, BINNER J, et al. Additive manufacturing of advanced ceramic materials [J]. Progress in Materials Science, 2021, 116: 100736.
[8] 潘继生, 阎秋生, 路家斌, 等. 集群磁流变平面抛光加工技术[J]. 机械工程学报, 2014, 50(1): 205-212.
PAN J S, YAN Q S, LU J B, et al. Cluster magnetorheological effect plane polishing technology [J]. Journal of Mechanical Engineering, 2014, 50(1): 205-212.
[9] BRINKSMEIER E, MUTLUGÜNES Y, KLOCKE F, et al. Ultra-precision grinding [J]. CIRP Annals, 2010, 59(2): 652-671.
[10] 王盛, 赵清亮, 王生, 等. 蓝宝石复杂表面光学元件精密–超精密磨削机理及关键技术研究进展[J]. 航空制造技术, 2022, 65(9): 69-80.
WANG S, ZHAO Q L, WANG S, et al. Research progress on precision and ultra-precision grinding mechanism and key technology on sapphire optical elements with complex surface [J]. Aeronautical Manufacturing Technology, 2022, 65(9): 69-80.
[11] 郭泫洋, 徐钰淳, 曹剑锋, 等. 金属结合剂金刚石砂轮表面微槽的激光修整技术[J]. 金刚石与磨料磨具工程, 2022, 42(3): 364-372.
GUO X Y, XU Y C, CAO J F, et al. Laser dressing technology for micro-grooves on the surface of metal-bonded diamond wheels [J]. Diamond & Abrasives Engineering, 2022, 42(3): 364-372.
[12] 陈哲, 陈春晖, 刘一波, 等. 树脂结合剂金刚石堆积磨料砂轮磨削YG8硬质合金[J]. 金刚石与磨料磨具工程, 2020, 40(6): 25-30.
CHEN Z, CHEN C H, LIU Y B, et al. Grinding YG8 cemented carbide with resin bond grinding wheels made of diamond agglomerate abrasive [J]. Diamond & Abrasives Engineering, 2020, 40(6): 25-30.
[13] 丁玉龙, 苗卫鹏, 骆苗地, 等. 陶瓷结合剂金刚石砂轮组织结构对其性能的影响[J]. 金刚石与磨料磨具工程, 2020, 40(4): 19-23.
DING Y L, MIAO W P, LUO M D, et al. Influence of structure of vitrified bond diamond grinding wheel on its performance [J]. Diamond & Abrasives Engineering, 2020, 40(4): 19-23.
[14] ZHAO B, DING W, XIAO G, et al. Effects of open pores on grinding performance of porous metal-bonded aggregated cBN wheels during grinding Ti–6Al–4V alloys [J]. Ceramics International, 2021, 47(22): 31311-31318.
[15] ZHANG C, QU S, XI W, et al. Preparation of a novel vitrified bond CBN grinding wheel and study on the grinding performance [J]. Ceramics International, 2022, 48(11): 15565-15575.
[16] 郭东明, 康仁科. 硅片的超精密磨削理论与技术[M]. 北京: 电子工业出版社, 2019.
[17] TAO H, LIU Y, ZHAO D, et al. Prediction and measurement for grinding force in wafer self-rotational grinding [J]. International Journal of Mechanical Sciences, 2023, 258: 108530.
[18] TAO H, LIU Y, ZHAO D, et al. The material removal and surface generation mechanism in ultra-precision grinding of silicon wafers [J]. International Journal of Mechanical Sciences, 2022, 222: 107240.
[19] NIKITINA I P, POLYAKOV A N. Improving thermal characteristics of double-sided face grinding machines[C]//Proceedings of the 9th International Conference on Industrial Engineering. Cham: Springer Nature Switzerland, 2023: 112-121.
[20] NIKITINA I P, POLYAKOV A N. Experimental study of double-sided face grinding machine tool [J]. Journal of physics. Conference series, 2019, 1399(4): 44026.
[21] FIVES. Product information[EB/OL]. (2023-05-28) [2023-08-28]. https://www.fivesgroup.com/high-precision-machines/grinding-technologies/surface/vdd-305/355/455/510/585/576
[22] 温海浪, 陆静, 李晨, 等. 大尺寸单晶金刚石磨抛一体化加工研究[J]. 人工晶体学报, 2022, 51(5): 941-947.
WEN H L, LU J, LI C, et al. Integrated processing of grinding and polishing for large-size single crystal diamond [J]. Journal of Synthetic Crystals, 2022, 51(5): 941-947.
[23] DISCO. Product information[EB/OL]. (2023-07-05) [2023-08-28]. https://www.disco.co.jp/eg/products/polisher_etcher/dgp8761.html.
[24] 郭兵, 张庆贺, 郭振飞, 等. 基于结构化砂轮的结构表面高效精密磨削技术研究[J]. 航空制造技术, 2022, 65(9): 50-59.
GUO B, ZHANG Q H, GUO Z F, et al. Research on high-efficiency precision grinding of structured surfaces basedon structured grinding wheels [J]. Aeronautical Manufacturing Technology, 2022, 65(9): 50-59.
[25] 轩闯, 王超超, 白福厚, 等. 基于空心氧化铝微球造孔的陶瓷结合剂金刚石砂轮[J]. 金刚石与磨料磨具工程, 2022, 42(4): 442-448.
XUAN C, WANG C C, BAI F H, et al. Vitrified bond diamond grinding wheel based on hollow corundum microspheres [J]. Diamond & Abrasives Engineering, 2022, 42(4): 442-448.
[26] 宋英桃, 侯永改, 李文凤, 等. 镍磷对陶瓷-金属结合剂性能与结构的影响[J]. 人工晶体学报, 2019, 48(11): 2130-2134.
SONG Y T, HOU Y G, LI W F, et al. Effect of Ni-P on properties and structure of ceramic-metal bond [J]. Journal of Synthetic Crystals, 2019, 48(11): 2130-2134.
[27] 张钰奇. 磨粒有序排布金刚石砂轮研制及其性能分析[D]. 焦作: 河南理工大学, 2020.
[28] 滕世国, 张松辉, 张晓红, 等. 不同结构化金刚石砂轮磨削碳化硅陶瓷的试验研究[J]. 工具技术, 2021, 55(8): 38-43.
TENG S G, ZHANG S H, ZHANG X H, et al. Experimental study on grinding SiC ceramics with different structured diamond wheels [J]. Tool Engineering, 2021, 55(8): 38-43.
[29] WU M, GUO B, ZHAO Q, et al. High efficiency precision grinding of micro-structured SiC surface using laser micro-structured coarse-grain diamond grinding wheel [J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(3): 577-586.
[30] GUO B, WU M, ZHAO Q, et al. Improvement of precision grinding performance of CVD diamond wheels by micro-structured surfaces [J]. Ceramics International, 2018, 44(14): 17333-17339.
[31] 母德强, 张发奎, 赵世彧, 等. 基于差压技术的砂轮磨损量检测研究[J]. 机床与液压, 2019, 47(2): 79-81.
MU D Q, ZHANG F K, ZHAO S Y, et al. Research on test of grinding wheel wear based on differential pressure technology [J]. Machine Tool & Hydraulics, 2019, 47(2): 79-81.
[32] 石建, 丁宁. 基于声发射技术的砂轮磨损状况在线检测[J]. 长春大学学报, 2013, 23(8): 931-936.
SHI J, DING N. On-ine detection of the state of grinding wheel wear based on acoustic emission technique [J]. Journal of Changchun University, 2013, 23(8): 931-936.
[33] LUO B, YAN Q S, PAN J S, et al. Influences of processing parameters on metal-bonded diamond wheel wear when grinding a sapphire wafer [J]. Diamond and Related Materials, 2021, 113: 108275.
[34] 张红轩, 阎秋生, 陈海阳. 树脂结合剂金刚石砂轮磨削蓝宝石的磨损过程研究[J]. 机电工程技术, 2020, 49(1): 1-4.
ZHANG H X, YAN Q S, CHEN H Y, Experimental study of resin-bonded diamond wheel wear in grinding of sapphire[J]. Mechanical & Electrical Engineering Technology, 2020, 49(1): 1-4.
[35] JEON S, ZOLFAGHARI A, LEE C. Dicing wheel wear monitoring technique utilizing edge diffraction effect [J]. Measurement, 2018, 121: 139-143.
[36] 汪旋. 基于磨削温度的砂轮磨损状态在线监测技术研究[D]. 泉州: 华侨大学, 2020.
[37] CHEN B, GUO B, ZHAO Q. Online monitoring of truing arc-shaped diamond wheel by acoustic emission signal [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2018, 232(8): 1484-1490.
[38] 母德强, 郑金涛, 司苏美, 等. 基于激光三角法的砂轮磨损量检测[J]. 长春工业大学学报, 2021, 42(3): 200-204.
MU D Q, ZHENG J T, SI S M, et al. Research on wear measurement of grinding wheel based on laser triangulation [J]. Journal of Changchun University of Technology, 2021, 42(3): 200-204.
[39] GUO B, ZHAO Q. Ultra-precision machining of hard and brittle materials with coarse-grained grinding wheels[C]//Zhang J, Guo B, Zhang J. Simulation and experiments of material-oriented ultra-precision machining. Singapore: Springer Singapore, 2019: 201-236.
[40] 焦锋, 李成龙, 牛赢, 等. 砂轮修整技术研究现状与展望[J]. 中国机械工程, 2021, 32(20): 2435-2448.
JIAO F, LI C L, NIU Y, et al. Review and prospect of grinding wheel dressing technique [J]. China Mechanical Engineering, 2021, 32(20): 2435-2448.
[41] 王楠. 磨削机床砂轮修整专利技术分析[J]. 金属加工(冷加工), 2017(19): 22-23.
[42] MUKHOPADHYAY M, KUNDU P K, CHATTERJEE S, et al. Impact of dressing infeed on SiC wheel for grinding Ti-6Al-4V [J]. Materials and Manufacturing Processes, 2019, 34(1): 54-60.
[43] LI M, DING W, LI B, et al. Morphological evolution and grinding performance of vitrified bonded microcrystal alumina abrasive wheel dressed with a single-grit diamond [J]. Ceramics International, 2019, 45(16): 19669-19678.
[44] ZHOU L, WEI Q, ZHENG N, et al. Dressing technology of arc diamond wheel by roll abrading in aspheric parallel grinding [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5-6): 2699-2706.
[45] XU L M, FAN F, ZHANG Z, et al. Fast on-machine profile characterization for grinding wheels and error compensation of wheel dressing [J]. Precision Engineering, 2019, 55: 417-425.
[46] 吴玉厚, 高龙飞, 李颂华, 等. 大直径凸弧金刚石砂轮精密修整工艺研究[J]. 现代制造工程, 2022(7): 97-103.
WU Y H, GAO L F, LI S H, et al. Research of precision dressing process for large diameter convex arc diamond grinding wheel [J]. Modern Manufacturing Engineering, 2022(7): 97-103.
[47] 梁志强, 吴立飞, 周天丰, 等. 金刚石砂轮V形尖端切向磨削修整试验研究[J]. 机械工程学报, 2018, 54(3): 196-202.
LIANG Z Q, WU L F, ZHOU T F, et al. Experimental study on diamond wheel V-tip truing using a tangential grinding truing method [J]. Journal of Mechanical Engineering, 2018, 54(3): 196-202.
[48] WANG S, ZHAO Q, GUO B. Wear characteristics of electroplated diamond dressing wheels used for on-machine precision truing of arc-shaped diamond wheels [J]. Diamond and Related Materials, 2022, 129: 109372.
[49] GUO B, MENG Q, LI S, et al. Pulse laser precision truing of the V-shaped coarse-grained electroplating CBN grinding wheel [J]. Materials & Design, 2022, 217: 110650.
[50] YANG Z, SUN W, HE D, et al. Effect of laser-assisted ultrasonic vibration dressing parameters of a cubic boron nitride grinding wheel on grinding force, surface quality, and particle morphology [J]. Reviews on Advanced Materials Science, 2021, 60(1): 691-701.
[51] 伍俏平, 欧阳志勇, 阳慧, 等. 碳纳米管对大粒度多层钎焊金刚石砂轮电解修整磨削性能的影响研究[J]. 机械工程学报, 2020, 56(7): 231-239.
WU Q P, OUYANG Z Y, YANG H, et al. Influence of carbon nanotubes on electrolytic dressing grinding performance of a multi-layer brazed coarse-grained diamond wheel [J]. Journal of Mechanical Engineering, 2020, 56(7): 231-239.
[52] 单子昭, 周聪, 陈根余, 等. 超硬磨料砂轮不同介质中电火花修整试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(5): 79-84.
SHAN Z Z, ZHOU C, CHEN G Y, et al. Experimental study on electro-discharge dressing of super-abrasive grinding wheel using different dielectric [J]. Diamond & Abrasives Engineering, 2020, 40(5): 79-84.
[53] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials [J]. Journal of Engineering for Industry-Transactions of the ASME, 1991, 113(2): 184-189.
[54] GE M, ZHU H, HUANG C, et al. Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments [J]. Materials Science in Semiconductor Processing, 2018, 74: 261-266.
[55] 潘继生. 单晶SiC基片超精密磨粒加工机理研究[D]. 广州: 广东工业大学, 2015.
[56] 段念, 黄身桂, 于怡青, 等. 不同圆角半径金刚石划擦单晶SiC过程中的材料去除机理研究[J]. 机械工程学报, 2017, 53(15): 171-180.
DUAN N, HUANG S G, YU Y Q, et al. The material removal mechanism of monocrystal SiC scratching by single diamond grit with different tip radius [J]. Journal of Mechanical Engineering, 2017, 53(15): 171-180.
[57] GUO J J, MADHAV R K, HIRATA A, et al. Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride [J]. Acta Materialia, 2015, 88: 252-259.
[58] MENG B, ZHANG Y, ZHANG F. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter [J]. Applied Physics A, 2016, 122(3): 247.
[59] YAN Q S, CHEN S K, PAN J S, et al. Surface and subsurface damage characteristics and material removal mechanism in 6H-SiC wafer grinding [J]. Materials Research Innovations, 2014, 18(sup2): S2-S742.
[60] 吴柯, 陆新明, MEHMOOD AWAIS, 等. 基于固结磨粒的单晶蓝宝石自旋转磨削加工方法[J]. 中国机械工程, 2021, 32(16): 2002-2007.
WU K, LU X M, MEHMOOD A, et al, Fixed abrasive based self-rotation grinding for single crystal sapphire[J]. China Mechanical Engineering, 2021, 32(16): 2002-2007.
[61] 周云光, 李红阳, 田川川, 等. SiC陶瓷磨削机理与表面质量研究[J]. 组合机床与自动化加工技术, 2022(3): 156-160.
ZHOU Y G, LI H Y, TIAN C C, et al. Study on grinding mechanism and surface quality of SiC ceramics [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(3): 156-160.
[62] GAO S, WU Y, KANG R, et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3 [J]. Materials Science in Semiconductor Processing, 2018, 79: 165-170.
[63] LI C, ZHANG F, MENG B, et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics [J]. Ceramics International, 2017, 43(3): 2981-2993.
[64] CHEN Y, HU Z, YU Y, et al. Processing and machining mechanism of ultrasonic vibration-assisted grinding on sapphire [J]. Materials Science in Semiconductor Processing, 2022, 142: 106470.
[65] 吴焕杰. 金刚石砂轮磨削碳化硅陶瓷的有限元仿真与实验研究[D]. 沈阳: 沈阳工业大学, 2021.
[66] 蒋培军. 基于温度匹配法的平面磨削3D有限元仿真及试验[J]. 金刚石与磨料磨具工程, 2020, 40(5): 96-101.
JIANG P J. Three dimensional simulation and experiment of plane grinding temperature field based on temperature matching method[J]. Diamond & Abrasives Engineering, 2020, 40(5): 96-101.
[67] XIAO G, TO S, ZHANG G. The mechanism of ductile deformation in ductile regime machining of 6H SiC [J]. Computational Materials Science, 2015, 98: 178-188.
[68] ZHANG C, DONG Z, ZHANG S, et al. The deformation mechanism of gallium-faces and nitrogen-faces gallium nitride during nanogrinding [J]. International Journal of Mechanical Sciences, 2022, 214: 106888.
[69] 邱鸿晶. 基于分子动力学的4H-SiC延性域超精密磨削机理研究[D]. 长沙: 湖南大学, 2020.
[70] 姚松林, 郑金涛, 母德强. 超声振动辅助磨削加工表面质量的研究[J]. 中国仪器仪表, 2021(2): 33-37.
YAO S L, ZHENG J T, MU D Q. Research on surface quality of ultrasonic vibration assisted grinding [J]. China Instrumentation, 2021(2): 33-37.
[71] SUN G, SHI F, ZHANG B, et al. Surface generation mechanism of the rotary ultrasonic vibration–assisted grinding of aspheric glass ceramics [J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(7-8): 2579-2595.
[72] HANG Y, SHENG W, QINGLIANG Z, et al. Ultra-precision grinding and accuracy measurement of the hard-brittle thin-walled tubular optics [C]// 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing and Metrology Technologies. Chengdu: SPIE, 2021: 120710H.
[73] PAN J, ZHANG X, YAN Q, et al. Experimental study of surface performance of monocrystalline 6H-SiC substrates in plane grinding with a metal-bonded diamond wheel [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1-4): 619-627.
[74] 王紫光, 刘金鑫, 尹剑, 等. 细粒度金刚石砂轮超精密磨削硅片的表面质量[J]. 中国机械工程, 2023, 34(2): 245-251.
WANG Z G, LIU J X, YIN J, et al. Surface quality of ultra-precision grinding of silicon with fine diamond grinding wheels [J]. China Mechanical Engineering, 2023, 34(2): 245-251.
[75] HUO F W, KANG R K, LI Z, et al. Origin, modeling and suppression of grinding marks in ultra precision grinding of silicon wafers [J]. International Journal of Machine Tools and Manufacture, 2013, 66: 54-65.
[76] 王建彬, 周立波. 工件自旋转平面磨削单晶功能材料的研究进展[J]. 人工晶体学报, 2018, 47(7): 1388-1395.
WANG J B, ZHOU L B. Study progress of single crystal functional materials by rotary infeed surface grinding [J]. Journal of Synthetic Crystals, 2018, 47(7): 1388-1395.
[77] 田海兰, 韩涛, 闫少华, 等. 单晶硅纳米磨削亚表面损伤形成机制及其抑制研究[J]. 制造技术与机床, 2023(3): 24-30.
TIAN H L, HAN T, YAN S H, et al. Study on formation mechanism and suppression of subsurface damage during nano-grinding of monocrystalline silicon [J]. Manufacturing Technology & Machine Tool, 2023(3): 24-30.
[78] 宋健. 单晶氮化镓的磨削特性研究及其分子动力学仿真[D]. 盐城: 盐城工学院, 2023.
[79] 戴剑博, 苏宏华, 傅玉灿等. 磨削速度对碳化硅陶瓷磨削损伤影响机制研究[J]. 机械工程学报, 2022, 58(21): 316-330.
DAI J B, SU H H, FU Y C, et al. Effect of grinding speed on mechining damage of silicon carbide ceramics [J]. Journal of Mechanical Engineering, 2022, 58(21): 316-330.
[80] 高尚, 耿宗超, 吴跃勤, 等. 石英玻璃超精密磨削加工的表面完整性研究[J]. 机械工程学报, 2019, 55(5): 186-195.
GAO S, GENG Z C, WU Y Q, et al. Surface integrity of quartz glass induced by ultra-precision grinding [J]. Journal of Mechanical Engineering, 2019, 55(5): 186-195.
[81] 王丽娟. 蓝宝石衬底的双面行星磨削加工机理研究[D]. 泉州: 华侨大学, 2019.
[82] 刘子阳, 常庆麒, 崔洁. 晶圆磨削中TTV的优化方法[J]. 电子工业专用设备, 2019, 48(5): 7-9.
LIU Z Y, CHANG Q Q, CUI J. Optimum method of TTV in wafer grinding [J]. Equipment for Electronic Products Manufacturing, 2019, 48(5): 7-9.
[83] 田业冰. 大尺寸硅片磨削平整化理论与工艺技术的研究[D]. 大连: 大连理工大学, 2007.
[84] GAO H, TIAN Y B, JIA Z Y, et al. Investigation on the dressing shape of vacuum chuck in wafer rotation grinding [J]. Key Engineering Materials, 2005, 291-292: 171-176.
[85] 姚卫华. 晶圆留边磨削面形仿真与控制[D]. 大连: 大连理工大学, 2022.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!