广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 12-31.doi: 10.12052/gdutxb.230110
王启民1,2, 彭滨1,2, 许雨翔1,2
Wang Qi-min1,2, Peng Bin1,2, Xu Yu-xiang1,2
摘要: 高速高精切削加工对切削刀具提出了愈加严苛的性能要求,表面硬质涂层可以显著提升切削刀具的耐磨性和使用寿命,已成为高性能切削刀具研发的关键。本文首先介绍了表面硬质涂层在切削过程中所起到的重要作用,然后综述了目前常用硬质涂层(氮化物、硼化物、氧化物等)及相关物理气相沉积技术的发展脉络和研究现状,最后分析了物理气相沉积刀具涂层存在的研究和应用问题。
中图分类号:
[1] 李忠新, 黄川, 刘延友. 高速切削加工关键技术及发展方向[J]. 中国工程机械学报, 2014, 12(1): 48-51. LI Z X, HUANG C, LIU Y Y. Enabling technologies and future directions towards high-speed cutting [J]. Chinese Journal of Construction Machinery, 2014, 12(1): 48-51. [2] ABUKHSHIM N A, MATIVENGA P T, SHEIKH M A. Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining [J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8): 782-800. [3] TRENT E M, WRIGHT P K. Metal cutting [M]. Woburn: Butterworth-Heinemann, 2000. [4] DAVIM J P. Tribology in manufacturing technology [M]. Berlin: Springer, 2012. [5] KOSEKI S, INOUE K, SEKIYA K, et al. Wear mechanisms of PVD-coated cutting tools during continuous turning of Ti-6Al-4V alloy [J]. Precision Engineering, 2017, 47: 434-444. [6] OKADA M, HOSOKAWA A, TANAKA R, et al. Cutting performance of PVD-coated carbide and CBN tools in hardmilling [J]. International Journal of Machine Tools and Manufacture, 2011, 51(2): 127-132. [7] NEUGEBAUER R, BOUZAKIS K-D, DENKENA B, et al. Velocity effects in metal forming and machining processes [J]. CIRP Annals, 2011, 60(2): 627-650. [8] NEMETZ A W, DAVES W, KLüNSNER T, et al. FE temperature-and residual stress prediction in milling inserts and correlation with experimentally observed damage mechanisms [J]. Journal of Materials Processing Technology, 2018, 256: 98-108. [9] SCHALK N, TKADLETZ M, MITTERER C. Hard coatings for cutting applications: physical vs. chemical vapor deposition and future challenges for the coatings community [J]. Surface and Coatings Technology, 2022, 429: 127949. [10] ZHANG S, SUN D, FU Y, et al. Recent advances of superhard nanocomposite coatings: a review [J]. Surface and Coatings Technology, 2003, 167(2-3): 113-119. [11] REBENNE H E, BHAT D G. Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance [J]. Surface and Coatings Technology, 1994, 63(1): 1-13. [12] HAUBNER R, LESSIAK M, PITONAK R, et al. Evolution of conventional hard coatings for its use on cutting tools [J]. International Journal of Refractory Metals and Hard Materials, 2017, 62: 210-218. [13] MATTHEWS A. Titanium nitride PVD coating technology [J]. Surface Engineering, 1985, 1(2): 93-104. [14] MÜNZ W D. Titanium aluminum nitride films: A new alternative to TiN coatings [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1986, 4(6): 2717-2725. [15] 王启民, 黄健, 王成勇, 等. 高速切削刀具物理气相沉积涂层研究进展[J]. 航空制造技术, 2013(14): 78-83. WANG Q M, HUANG J, WANG C Y, et al. Development of PVD coating for high-speed machining cutting tool [J]. Aeronautical Manufacturing Technology, 2013(14): 78-83. [16] HE L, CHEN L, XU Y, et al. Thermal stability and oxidation resistance of Cr1-xAlxN coatings with single phase cubic structure [J]. Journal of Vacuum Science & Technology A, 2015, 33(6): 061513. [17] FOX-RABINOVICH G S, YAMOMOTO K, VELDHUIS S C, et al. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions [J]. Surface and Coatings Technology, 2005, 200(5): 1804-1813. [18] FRANZ R, MITTERER C. Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: a review [J]. Surface and Coatings Technology, 2013, 228: 1-13. [19] RACHBAUER R, HOLEC D, MAYRHOFER P H. Increased thermal stability of Ti–Al–N thin films by Ta alloying [J]. Surface and Coatings Technology, 2012, 211: 98-103. [20] LEMBKE M I, LEWIS D B, MüNZ W. -D, et al. Joint Second PrizeSignificance of Y and Cr in TiAlN Hard Coatings for Dry High Speed Cutting [J]. Surface Engineering, 2001, 17(2): 153-158. [21] ANINAT R, VALLE N, CHEMIN J B, et al. Addition of Ta and Y in a hard Ti–Al–N PVD coating: Individual and conjugated effect on the oxidation and wear properties [J]. Corrosion Science, 2019, 156: 171-180. [22] PENG B, LI H, ZHANG Q, et al. High-temperature thermal stability and oxidation resistance of Cr and Ta co-alloyed Ti–Al–N coatings deposited by cathodic arc evaporation [J]. Corrosion Science, 2020, 167: 108490. [23] LEHOCZKY S. Retardation of dislocation generation and motion in thin-layered metal laminates [J]. Physical Review Letters, 1978, 41(26): 1814. [24] HELMERSSON U, TODOROVA S, BARNETT S A, et al. Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness [J]. Journal of Applied Physics, 1987, 62(2): 481-484. [25] SPROUL W D. New routes in the preparation of mechanically hard films [J]. Science, 1996, 273(5277): 889-892. [26] LI P, CHEN L, WANG S Q, et al. Microstructure, mechanical and thermal properties of TiAlN/CrAlN multilayer coatings [J]. International Journal of Refractory Metals and Hard Materials, 2013, 40: 51-57. [27] XU Y X, CHEN L, PEI F, et al. Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers: First-principles and experimental investigations [J]. Acta Materialia, 2017, 130: 281-288. [28] ZHANG Q, XU Y, ZHANG T, et al. Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating [J]. Surface and Coatings Technology, 2018, 356: 1-10. [29] PATSCHEIDER J, ZEHNDER T, DISERENS M. Structure–performance relations in nanocomposite coatings [J]. Surface and Coatings Technology, 2001, 146-147: 201-208. [30] VEPREK S, NIEDERHOFER A, MOTO K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV= 80 to ≥ 105 GPa [J]. Surface and Coatings Technology, 2000, 133: 152-159. [31] VEPREK S, VEPREK-HEIJMAN M G, KARVANKOVA P, et al. Different approaches to superhard coatings and nanocomposites [J]. Thin Solid Films, 2005, 476(1): 1-29. [32] KIM J S, KIM G J, KANG M C, et al. Cutting performance of Ti–Al–Si–N-coated tool by a hybrid-coating system for high-hardened materials [J]. Surface and Coatings Technology, 2005, 193(1-3): 249-254. [33] FLINK A, ANDERSSON J, ALLING B, et al. Structure and thermal stability of arc evaporated (Ti0.33Al0.67) 1-xSixN thin films [J]. Thin Solid Films, 2008, 517(2): 714-721. [34] HOLUBáŘ P, Jı?LEK M, ŠıMA M. Nanocomposite nc-TiAlSiN and nc-TiN–BN coatings: their applications on substrates made of cemented carbide and results of cutting tests [J]. Surface and Coatings Technology, 1999, 120: 184-188. [35] WU Z, TENGSTRAND O, BAKHIT B, et al. Growth of dense, hard yet low-stress Ti0.40Al0.27W0.33N nanocomposite films with rotating substrate and no external substrate heating [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2020, 38(2): 023006. [36] CHEN L, DU Y, WANG A J, et al. Effect of Al content on microstructure and mechanical properties of Ti–Al–Si–N nanocomposite coatings [J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(4): 718-721. [37] FU Y, ZHOU F, ZHANG M, et al. Structural, mechanical and tribocorrosion performances of CrMoSiN coatings with various Mo contents in artificial seawater [J]. Applied Surface Science, 2020, 525: 146629. [38] WU Y, WANG B, XIAO L, et al. Effects of boron content on microstructure and mechanical properties of TiAlSiBxN nanocomposite films [J]. Journal of Materials Engineering and Performance, 2020, 29(4): 2731-2736. [39] GU J, LI L, MIAO H, et al. Effect of C2H2/N2 partial pressure ratio on microstructure and mechanical properties of Ti-Al-Si-CN coatings [J]. Surface and Coatings Technology, 2019, 365: 200-207. [40] XU Z, ZHANG Z, BARTOSIK M, et al. Insight into the structural evolution during TiN film growth via atomic resolution TEM [J]. Journal of Alloys and Compounds, 2018, 754: 257-267. [41] CHEN Z, SHAO Q, BARTOSIK M, et al. Growth-twins in CrN/AlN multilayers induced by hetero-phase interfaces [J]. Acta Materialia, 2020, 185: 157-170. [42] 黄小晓, 涂赣峰, 王术新, 等. TiB2涂层的制备及其应用研究进展[J]. 稀有金属材料与工程, 2022, 51(3): 1087-1099. HUANG X X, TU G F, WANG S X, et al. Research progress in preparation and application of TiB2 coating [J]. Rare Metal Materials and Engineering, 2022, 51(3): 1087-1099. [43] 林海生. 面向钛合金高速切削的Hf-B和Hf-B-N涂层刀具研究 [D]. 广州: 广东工业大学, 2019. [44] MAYRHOFER P H, MITTERER C, WEN J G, et al. Self-organized nanocolumnar structure in superhard TiB2 thin films [J]. Applied Physics Letters, 2005, 86(13): 131909. [45] NEIDHARDT J, MRáZ S, SCHNEIDER J M, et al. Experiment and simulation of the compositional evolution of Ti–B thin films deposited by sputtering of a compound target [J]. Journal of Applied Physics, 2008, 104(6): 063304. [46] MAYRHOFER P H, MITTERER C, CLEMENS H. Self‐organized nanostructures in hard ceramic coatings [J]. Advanced Engineering Materials, 2005, 7(12): 1071-1082. [47] STüBER M, RIEDL H, WOJCIK T, et al. Microstructure of Al-containing magnetron sputtered TiB2 thin films [J]. Thin Solid Films, 2019, 688: 137361. [48] BAKHIT B, PALISAITIS J, WU Z, et al. Age hardening in superhard ZrB2-rich Zr1-xTaxBy thin films [J]. Scripta Materialia, 2021, 191: 120-125. [49] PETROV I, HALL A, MEI A B, et al. Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films [J]. Journal of Vacuum Science & Technology A, 2017, 35(5): 050601. [50] 吴正涛, 叶榕礼, 李海庆, 等. HiPIMS 制备 TiB2, TiBN涂层及其等离子体性质[J]. 中国表面工程, 2023, 35(5): 228-235. WU Z T, YE R L, LI H Q, et al. Fabrication and plasma properties of TiB2, TiBN films by HiPIMS [J]. China Surface Engineering, 2023, 35(5): 228-235. [51] BAKHIT B, MRáZ S, LU J, et al. Dense Ti0.67Hf0.33B1.7 thin films grown by hybrid HfB2-HiPIMS/TiB2-DCMS co-sputtering without external heating [J]. Vacuum, 2021, 186: 110057. [52] FUGER C, MORAES V, HAHN R, et al. Influence of Tantalum on phase stability and mechanical properties of WB2 [J]. MRS Communications, 2019, 9(1): 375-380. [53] HELLGREN N, SREDENSCHEK A, PETRUINS A, et al. Synthesis and characterization of TiBx (1.2≤x≤2.8) thin films grown by DC magnetron co-sputtering from TiB2 and Ti targets [J]. Surface and Coatings Technology, 2022, 433: 128110. [54] WANG T G, JEONG D, KIM S H, et al. Study on nanocrystalline Cr2O3 films deposited by arc ion plating: I. composition, morphology, and microstructure analysis [J]. Surface and Coatings Technology, 2012, 206(10): 2629-2637. [55] WANG T G, JEONG D, LIU Y, et al. Study on nanocrystalline Cr2O3 films deposited by arc ion plating: II. Mechanical and tribological properties [J]. Surface and Coatings Technology, 2012, 206(10): 2638-2644. [56] RANDHAWA H. High-rate deposition of Al2O3 films using modified cathodic arc plasma deposition processes [J]. Journal of Vacuum Science & Technology A, 1989, 7(3): 2346-2349. [57] ROSéN J, MRáZ S, KREISSIG U, et al. Effect of ion energy on structure and composition of cathodic arc deposited alumina thin films [J]. Plasma Chemistry and Plasma Processing, 2005, 25(4): 303-317. [58] BRILL R, KOCH F, MAZURELLE J, et al. Crystal structure characterisation of filtered arc deposited alumina coatings: temperature and bias voltage [J]. Surface and Coatings Technology, 2003, 174-175: 606-610. [59] CHENG Y, QIU W, ZHOU K, et al. Low-temperature deposition of α-Al2O3 film using Al+α-Al2O3 composite target by radio frequency magnetron sputtering [J]. Materials Research Express, 2019, 6(8): 086412. [60] 程奕天. 低温反应溅射沉积α-Al2O3薄膜的组织与性能研究 [D]. 广州: 华南理工大学; 2019. [61] BOBZIN K, LUGSCHEIDER E, MAES M, et al. Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering [J]. Thin Solid Films, 2006, 494(1): 255-262. [62] SPROUL W D, CHRISTIE D J, CARTER D C. Control of reactive sputtering processes [J]. Thin Solid Films, 2005, 491(1): 1-17. [63] FIETZKE F, GOEDICKE K, HEMPEL W. The deposition of hard crystalline Al2O3 layers by means of bipolar pulsed magnetron sputtering [J]. Surface and Coatings Technology, 1996, 86-87: 657-663. [64] ZYWITZKI O, HOETZSCH G, FIETZKE F, et al. Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering [J]. Surface and Coatings Technology, 1996, 82(1): 169-175. [65] 王启民, 张小波, 张世宏, 等. 高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J]. 广东工业大学学报, 2013(4): 1-13. WANG Q M, ZHANG X B, ZHANG S H, et al. Progress of high power impulse magnetron sputtering for deposition of hard coaitngs [J]. Journal of Guangdong University of Technology, 2013(4): 1-13. [66] WALLIN E, HELMERSSON U. Hysteresis-free reactive high power impulse magnetron sputtering [J]. Thin Solid Films, 2008, 516(18): 6398-6401. [67] SELINDER T I, CORONEL E, WALLIN E, et al. α-Alumina coatings on WC/Co substrates by physical vapor deposition [J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 507-512. [68] BOBZIN K, BRöGELMANN T, KRUPPE N C, et al. Development of HPPMS-Al2O3-coatings for the machining of hard-to-machine materials [J]. Materialwissenschaft und Werkstofftechnik, 2018, 49(11): 1287-1300. [69] ANDERSSON J M, CZIGáNY Z, JIN P, et al. Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers [J]. Journal of Vacuum Science & Technology A, 2003, 22(1): 117-121. [70] JIN P, NAKAO S, WANG S X, et al. Localized epitaxial growth of α-Al2O3 thin films on Cr2O3 template by sputter deposition at low substrate temperature [J]. Applied Physics Letters, 2003, 82(7): 1024-1026. [71] ASHENFORD D E, LONG F, HAGSTON W E, et al. Experimental and theoretical studies of the low-temperature growth of chromia and alumina [J]. Surface and Coatings Technology, 1999, 116-119: 699-704. [72] EKLUND P, SRIDHARAN M, SILLASSEN M, et al. α-Cr2O3 template-texture effect on α-Al2O3 thin-film growth [J]. Thin Solid Films, 2008, 516(21): 7447-7450. [73] ANDERSSON J M, WALLIN E, HELMERSSON U, et al. Phase control of Al2O3 thin films grown at low temperatures [J]. Thin Solid Films, 2006, 513(1): 57-59. [74] DIECHLE D, STUEBER M, LEISTE H, et al. Combinatorial approach to the growth of α-(Al1-x, Crx) 2O3 solid solution strengthened thin films by reactive r. f. magnetron sputtering [J]. Surface and Coatings Technology, 2010, 204(20): 3258-3264. [75] DIECHLE D. Herstellung und charakterisierung oxidbasierter PVD-hartstoffschichten in den stoffsystemen Al-Cr-O und Al-Cr-O-N [D]. Karlsruher: Karlsruher Institut für Technologie, 2012. [76] RAMM J, ANTE M, BACHMANN T, et al. Pulse enhanced electron emission (P3eTM) arc evaporation and the synthesis of wear resistant Al-Cr-O coatings in corundum structure [J]. Surface and Coatings Technology, 2007, 202(4): 876-883. [77] KOLLER C M, DALBAUER V, SCHMELZ A, et al. Structure, mechanical properties, and thermal stability of arc evaporated (Al1-xCrx) 2O3 coatings [J]. Surface and Coatings Technology, 2018, 342: 37-47. [78] DALBAUER V, RAMM J, KOLOZSVáRI S, et al. On the phase evolution of arc evaporated Al-Cr-based intermetallics and oxides [J]. Thin Solid Films, 2017, 644: 120-128. [79] KOLLER C M, GLATZ S A, KOLOZSVáRI S, et al. Influence of substrate bias on structure and mechanical properties of arc evaporated (Al, Cr) 2O3 and (Al, Cr, Fe) 2O3 coatings [J]. Surface and Coatings Technology, 2017, 319: 386-393. [80] NAJAFI H, KARIMI A, DESSARZIN P, et al. Formation of cubic structured (Al1-xCrx) 2+ δO3 and its dynamic transition to corundum phase during cathodic arc evaporation [J]. Surface and Coatings Technology, 2013, 214: 46-52. [81] KOLLER C M, KOUTNá N, RAMM J, et al. First principles studies on the impact of point defects on the phase stability of (AlxCr1-x) 2O3 solid solutions [J]. AIP Advances, 2016, 6(2): 025002. [82] KOLLER C M, RAMM J, KOLOZSVáRI S, et al. Corundum-type Fe-doped cathodic arc evaporated Al-Cr-O coatings [J]. Scripta Materialia, 2015, 97: 49-52. [83] PAULITSCH J, RACHBAUER R, RAMM J, et al. Influence of Si on the target oxide poisoning during reactive arc evaporation of (Al, Cr) 2O3 coatings [J]. Vacuum, 2014, 100: 29-32. [84] LANDäLV L, GöTHELID E, JENSEN J, et al. Influence of Si doping and O2 flow on arc-deposited (Al, Cr) 2O3 coatings [J]. Journal of Vacuum Science & Technology A, 2019, 37(6): 061516. [85] LIU H, DU H, XIAN G, et al. Ab-initio calculations of corundum structured α-(Al0.75Cr0.22Me0.03) 2O3 compounds (Me=Si, Fe, Mn, Ti, V and Y) [J]. Computational Materials Science, 2022, 212: 111601. [86] KOLLER C M, DALBAUER V, KIRNBAUER A, et al. Impact of Si and B on the phase stability of cathodic arc evaporated Al0.70Cr0.30-based oxides [J]. Scripta Materialia, 2018, 152: 107-111. [87] KOLLER C M, KIRNBAUER A, KOLOZSVáRI S, et al. Impact of morphology and phase composition on mechanical properties of α-structured (Cr, Al) 2O3/(Al, Cr, X) 2O3 multilayers [J]. Scripta Materialia, 2018, 146: 208-212. [88] KOLLER C M, STUEBER M, MAYRHOFER P-H. Progress in the synthesis of Al- and Cr-based sesquioxide coatings for protective applications [J]. Journal of Vacuum Science & Technology A, 2019, 37(6): 060802. [89] ÅSTRAND M, SELINDER T I, FIETZKE F, et al. PVD-Al2O3-coated cemented carbide cutting tools [J]. Surface and Coatings Technology, 2004, 188-189: 186-192. [90] NOHAVA J, DESSARZIN P, KARVANKOVA P, et al. Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures [J]. Tribology International, 2015, 81: 231-239. |
[1] | 王启民, 张小波, 张世宏, 王成勇, 伍尚华. 高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J]. 广东工业大学学报, 2013, 30(4): 1-13. |
[2] | 何玉定; 胡社军; 谢光荣; . TiN涂层应用及研究进展[J]. 广东工业大学学报, 2005, 22(2): 31-36. |
|