广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 12-31.doi: 10.12052/gdutxb.230110

• 精密制造技术与装备 • 上一篇    下一篇

面向切削刀具的物理气相沉积涂层回顾与展望

王启民1,2, 彭滨1,2, 许雨翔1,2   

  1. 1. 广东工业大学 机电工程学院, 广东 广州 510006;
    2. 高性能工具全国重点实验室, 广东 广州 510006
  • 收稿日期:2023-09-28 出版日期:2023-11-25 发布日期:2023-11-08
  • 作者简介:王启民(1977-),男,教授,博士,主要研究方向为先进表面防护涂层,E-mail:qmwang@gdut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52375173);东莞市重点领域研发项目(20221200300032)

Review and Prospect of Physical Vapor Deposition Coatings for Cutting Tools

Wang Qi-min1,2, Peng Bin1,2, Xu Yu-xiang1,2   

  1. 1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. State Key Laboratory for High-Performance Tools, Guangzhou 510006, China
  • Received:2023-09-28 Online:2023-11-25 Published:2023-11-08

摘要: 高速高精切削加工对切削刀具提出了愈加严苛的性能要求,表面硬质涂层可以显著提升切削刀具的耐磨性和使用寿命,已成为高性能切削刀具研发的关键。本文首先介绍了表面硬质涂层在切削过程中所起到的重要作用,然后综述了目前常用硬质涂层(氮化物、硼化物、氧化物等)及相关物理气相沉积技术的发展脉络和研究现状,最后分析了物理气相沉积刀具涂层存在的研究和应用问题。

关键词: 切削刀具, 硬质涂层, 物理气相沉积, 多元涂层, 纳米结构涂层

Abstract: The advancement of high-speed and high-precision machining has led to a growing demand for cutting tools. Surface hard coatings substantially enhance the wear resistance and overall lifespan of cutting tools, thereby playing a pivotal role in the development of high-performance tools. This paper first introduces the significance of surface hard coatings in cutting operations, then reviews the research status of common hard coatings such as nitride, boride, and oxide, along with associated physical vapor deposition techniques. Finally, an analysis is conducted to identify the prevailing research and application challenges encountered in physical vapor deposition tool coatings.

Key words: cutting tools, hard coatings, physical vapor deposition, multicomponent coatings, nanostructured coatings

中图分类号: 

  • TG71
[1] 李忠新, 黄川, 刘延友. 高速切削加工关键技术及发展方向[J]. 中国工程机械学报, 2014, 12(1): 48-51.
LI Z X, HUANG C, LIU Y Y. Enabling technologies and future directions towards high-speed cutting [J]. Chinese Journal of Construction Machinery, 2014, 12(1): 48-51.
[2] ABUKHSHIM N A, MATIVENGA P T, SHEIKH M A. Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining [J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8): 782-800.
[3] TRENT E M, WRIGHT P K. Metal cutting [M]. Woburn: Butterworth-Heinemann, 2000.
[4] DAVIM J P. Tribology in manufacturing technology [M]. Berlin: Springer, 2012.
[5] KOSEKI S, INOUE K, SEKIYA K, et al. Wear mechanisms of PVD-coated cutting tools during continuous turning of Ti-6Al-4V alloy [J]. Precision Engineering, 2017, 47: 434-444.
[6] OKADA M, HOSOKAWA A, TANAKA R, et al. Cutting performance of PVD-coated carbide and CBN tools in hardmilling [J]. International Journal of Machine Tools and Manufacture, 2011, 51(2): 127-132.
[7] NEUGEBAUER R, BOUZAKIS K-D, DENKENA B, et al. Velocity effects in metal forming and machining processes [J]. CIRP Annals, 2011, 60(2): 627-650.
[8] NEMETZ A W, DAVES W, KLüNSNER T, et al. FE temperature-and residual stress prediction in milling inserts and correlation with experimentally observed damage mechanisms [J]. Journal of Materials Processing Technology, 2018, 256: 98-108.
[9] SCHALK N, TKADLETZ M, MITTERER C. Hard coatings for cutting applications: physical vs. chemical vapor deposition and future challenges for the coatings community [J]. Surface and Coatings Technology, 2022, 429: 127949.
[10] ZHANG S, SUN D, FU Y, et al. Recent advances of superhard nanocomposite coatings: a review [J]. Surface and Coatings Technology, 2003, 167(2-3): 113-119.
[11] REBENNE H E, BHAT D G. Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance [J]. Surface and Coatings Technology, 1994, 63(1): 1-13.
[12] HAUBNER R, LESSIAK M, PITONAK R, et al. Evolution of conventional hard coatings for its use on cutting tools [J]. International Journal of Refractory Metals and Hard Materials, 2017, 62: 210-218.
[13] MATTHEWS A. Titanium nitride PVD coating technology [J]. Surface Engineering, 1985, 1(2): 93-104.
[14] MÜNZ W D. Titanium aluminum nitride films: A new alternative to TiN coatings [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1986, 4(6): 2717-2725.
[15] 王启民, 黄健, 王成勇, 等. 高速切削刀具物理气相沉积涂层研究进展[J]. 航空制造技术, 2013(14): 78-83.
WANG Q M, HUANG J, WANG C Y, et al. Development of PVD coating for high-speed machining cutting tool [J]. Aeronautical Manufacturing Technology, 2013(14): 78-83.
[16] HE L, CHEN L, XU Y, et al. Thermal stability and oxidation resistance of Cr1-xAlxN coatings with single phase cubic structure [J]. Journal of Vacuum Science & Technology A, 2015, 33(6): 061513.
[17] FOX-RABINOVICH G S, YAMOMOTO K, VELDHUIS S C, et al. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions [J]. Surface and Coatings Technology, 2005, 200(5): 1804-1813.
[18] FRANZ R, MITTERER C. Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: a review [J]. Surface and Coatings Technology, 2013, 228: 1-13.
[19] RACHBAUER R, HOLEC D, MAYRHOFER P H. Increased thermal stability of Ti–Al–N thin films by Ta alloying [J]. Surface and Coatings Technology, 2012, 211: 98-103.
[20] LEMBKE M I, LEWIS D B, MüNZ W. -D, et al. Joint Second PrizeSignificance of Y and Cr in TiAlN Hard Coatings for Dry High Speed Cutting [J]. Surface Engineering, 2001, 17(2): 153-158.
[21] ANINAT R, VALLE N, CHEMIN J B, et al. Addition of Ta and Y in a hard Ti–Al–N PVD coating: Individual and conjugated effect on the oxidation and wear properties [J]. Corrosion Science, 2019, 156: 171-180.
[22] PENG B, LI H, ZHANG Q, et al. High-temperature thermal stability and oxidation resistance of Cr and Ta co-alloyed Ti–Al–N coatings deposited by cathodic arc evaporation [J]. Corrosion Science, 2020, 167: 108490.
[23] LEHOCZKY S. Retardation of dislocation generation and motion in thin-layered metal laminates [J]. Physical Review Letters, 1978, 41(26): 1814.
[24] HELMERSSON U, TODOROVA S, BARNETT S A, et al. Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness [J]. Journal of Applied Physics, 1987, 62(2): 481-484.
[25] SPROUL W D. New routes in the preparation of mechanically hard films [J]. Science, 1996, 273(5277): 889-892.
[26] LI P, CHEN L, WANG S Q, et al. Microstructure, mechanical and thermal properties of TiAlN/CrAlN multilayer coatings [J]. International Journal of Refractory Metals and Hard Materials, 2013, 40: 51-57.
[27] XU Y X, CHEN L, PEI F, et al. Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers: First-principles and experimental investigations [J]. Acta Materialia, 2017, 130: 281-288.
[28] ZHANG Q, XU Y, ZHANG T, et al. Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating [J]. Surface and Coatings Technology, 2018, 356: 1-10.
[29] PATSCHEIDER J, ZEHNDER T, DISERENS M. Structure–performance relations in nanocomposite coatings [J]. Surface and Coatings Technology, 2001, 146-147: 201-208.
[30] VEPREK S, NIEDERHOFER A, MOTO K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV= 80 to ≥ 105 GPa [J]. Surface and Coatings Technology, 2000, 133: 152-159.
[31] VEPREK S, VEPREK-HEIJMAN M G, KARVANKOVA P, et al. Different approaches to superhard coatings and nanocomposites [J]. Thin Solid Films, 2005, 476(1): 1-29.
[32] KIM J S, KIM G J, KANG M C, et al. Cutting performance of Ti–Al–Si–N-coated tool by a hybrid-coating system for high-hardened materials [J]. Surface and Coatings Technology, 2005, 193(1-3): 249-254.
[33] FLINK A, ANDERSSON J, ALLING B, et al. Structure and thermal stability of arc evaporated (Ti0.33Al0.67) 1-xSixN thin films [J]. Thin Solid Films, 2008, 517(2): 714-721.
[34] HOLUBáŘ P, Jı?LEK M, ŠıMA M. Nanocomposite nc-TiAlSiN and nc-TiN–BN coatings: their applications on substrates made of cemented carbide and results of cutting tests [J]. Surface and Coatings Technology, 1999, 120: 184-188.
[35] WU Z, TENGSTRAND O, BAKHIT B, et al. Growth of dense, hard yet low-stress Ti0.40Al0.27W0.33N nanocomposite films with rotating substrate and no external substrate heating [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2020, 38(2): 023006.
[36] CHEN L, DU Y, WANG A J, et al. Effect of Al content on microstructure and mechanical properties of Ti–Al–Si–N nanocomposite coatings [J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(4): 718-721.
[37] FU Y, ZHOU F, ZHANG M, et al. Structural, mechanical and tribocorrosion performances of CrMoSiN coatings with various Mo contents in artificial seawater [J]. Applied Surface Science, 2020, 525: 146629.
[38] WU Y, WANG B, XIAO L, et al. Effects of boron content on microstructure and mechanical properties of TiAlSiBxN nanocomposite films [J]. Journal of Materials Engineering and Performance, 2020, 29(4): 2731-2736.
[39] GU J, LI L, MIAO H, et al. Effect of C2H2/N2 partial pressure ratio on microstructure and mechanical properties of Ti-Al-Si-CN coatings [J]. Surface and Coatings Technology, 2019, 365: 200-207.
[40] XU Z, ZHANG Z, BARTOSIK M, et al. Insight into the structural evolution during TiN film growth via atomic resolution TEM [J]. Journal of Alloys and Compounds, 2018, 754: 257-267.
[41] CHEN Z, SHAO Q, BARTOSIK M, et al. Growth-twins in CrN/AlN multilayers induced by hetero-phase interfaces [J]. Acta Materialia, 2020, 185: 157-170.
[42] 黄小晓, 涂赣峰, 王术新, 等. TiB2涂层的制备及其应用研究进展[J]. 稀有金属材料与工程, 2022, 51(3): 1087-1099.
HUANG X X, TU G F, WANG S X, et al. Research progress in preparation and application of TiB2 coating [J]. Rare Metal Materials and Engineering, 2022, 51(3): 1087-1099.
[43] 林海生. 面向钛合金高速切削的Hf-B和Hf-B-N涂层刀具研究 [D]. 广州: 广东工业大学, 2019.
[44] MAYRHOFER P H, MITTERER C, WEN J G, et al. Self-organized nanocolumnar structure in superhard TiB2 thin films [J]. Applied Physics Letters, 2005, 86(13): 131909.
[45] NEIDHARDT J, MRáZ S, SCHNEIDER J M, et al. Experiment and simulation of the compositional evolution of Ti–B thin films deposited by sputtering of a compound target [J]. Journal of Applied Physics, 2008, 104(6): 063304.
[46] MAYRHOFER P H, MITTERER C, CLEMENS H. Self‐organized nanostructures in hard ceramic coatings [J]. Advanced Engineering Materials, 2005, 7(12): 1071-1082.
[47] STüBER M, RIEDL H, WOJCIK T, et al. Microstructure of Al-containing magnetron sputtered TiB2 thin films [J]. Thin Solid Films, 2019, 688: 137361.
[48] BAKHIT B, PALISAITIS J, WU Z, et al. Age hardening in superhard ZrB2-rich Zr1-xTaxBy thin films [J]. Scripta Materialia, 2021, 191: 120-125.
[49] PETROV I, HALL A, MEI A B, et al. Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films [J]. Journal of Vacuum Science & Technology A, 2017, 35(5): 050601.
[50] 吴正涛, 叶榕礼, 李海庆, 等. HiPIMS 制备 TiB2, TiBN涂层及其等离子体性质[J]. 中国表面工程, 2023, 35(5): 228-235.
WU Z T, YE R L, LI H Q, et al. Fabrication and plasma properties of TiB2, TiBN films by HiPIMS [J]. China Surface Engineering, 2023, 35(5): 228-235.
[51] BAKHIT B, MRáZ S, LU J, et al. Dense Ti0.67Hf0.33B1.7 thin films grown by hybrid HfB2-HiPIMS/TiB2-DCMS co-sputtering without external heating [J]. Vacuum, 2021, 186: 110057.
[52] FUGER C, MORAES V, HAHN R, et al. Influence of Tantalum on phase stability and mechanical properties of WB2 [J]. MRS Communications, 2019, 9(1): 375-380.
[53] HELLGREN N, SREDENSCHEK A, PETRUINS A, et al. Synthesis and characterization of TiBx (1.2≤x≤2.8) thin films grown by DC magnetron co-sputtering from TiB2 and Ti targets [J]. Surface and Coatings Technology, 2022, 433: 128110.
[54] WANG T G, JEONG D, KIM S H, et al. Study on nanocrystalline Cr2O3 films deposited by arc ion plating: I. composition, morphology, and microstructure analysis [J]. Surface and Coatings Technology, 2012, 206(10): 2629-2637.
[55] WANG T G, JEONG D, LIU Y, et al. Study on nanocrystalline Cr2O3 films deposited by arc ion plating: II. Mechanical and tribological properties [J]. Surface and Coatings Technology, 2012, 206(10): 2638-2644.
[56] RANDHAWA H. High-rate deposition of Al2O3 films using modified cathodic arc plasma deposition processes [J]. Journal of Vacuum Science & Technology A, 1989, 7(3): 2346-2349.
[57] ROSéN J, MRáZ S, KREISSIG U, et al. Effect of ion energy on structure and composition of cathodic arc deposited alumina thin films [J]. Plasma Chemistry and Plasma Processing, 2005, 25(4): 303-317.
[58] BRILL R, KOCH F, MAZURELLE J, et al. Crystal structure characterisation of filtered arc deposited alumina coatings: temperature and bias voltage [J]. Surface and Coatings Technology, 2003, 174-175: 606-610.
[59] CHENG Y, QIU W, ZHOU K, et al. Low-temperature deposition of α-Al2O3 film using Al+α-Al2O3 composite target by radio frequency magnetron sputtering [J]. Materials Research Express, 2019, 6(8): 086412.
[60] 程奕天. 低温反应溅射沉积α-Al2O3薄膜的组织与性能研究 [D]. 广州: 华南理工大学; 2019.
[61] BOBZIN K, LUGSCHEIDER E, MAES M, et al. Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering [J]. Thin Solid Films, 2006, 494(1): 255-262.
[62] SPROUL W D, CHRISTIE D J, CARTER D C. Control of reactive sputtering processes [J]. Thin Solid Films, 2005, 491(1): 1-17.
[63] FIETZKE F, GOEDICKE K, HEMPEL W. The deposition of hard crystalline Al2O3 layers by means of bipolar pulsed magnetron sputtering [J]. Surface and Coatings Technology, 1996, 86-87: 657-663.
[64] ZYWITZKI O, HOETZSCH G, FIETZKE F, et al. Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering [J]. Surface and Coatings Technology, 1996, 82(1): 169-175.
[65] 王启民, 张小波, 张世宏, 等. 高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J]. 广东工业大学学报, 2013(4): 1-13.
WANG Q M, ZHANG X B, ZHANG S H, et al. Progress of high power impulse magnetron sputtering for deposition of hard coaitngs [J]. Journal of Guangdong University of Technology, 2013(4): 1-13.
[66] WALLIN E, HELMERSSON U. Hysteresis-free reactive high power impulse magnetron sputtering [J]. Thin Solid Films, 2008, 516(18): 6398-6401.
[67] SELINDER T I, CORONEL E, WALLIN E, et al. α-Alumina coatings on WC/Co substrates by physical vapor deposition [J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 507-512.
[68] BOBZIN K, BRöGELMANN T, KRUPPE N C, et al. Development of HPPMS-Al2O3-coatings for the machining of hard-to-machine materials [J]. Materialwissenschaft und Werkstofftechnik, 2018, 49(11): 1287-1300.
[69] ANDERSSON J M, CZIGáNY Z, JIN P, et al. Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers [J]. Journal of Vacuum Science & Technology A, 2003, 22(1): 117-121.
[70] JIN P, NAKAO S, WANG S X, et al. Localized epitaxial growth of α-Al2O3 thin films on Cr2O3 template by sputter deposition at low substrate temperature [J]. Applied Physics Letters, 2003, 82(7): 1024-1026.
[71] ASHENFORD D E, LONG F, HAGSTON W E, et al. Experimental and theoretical studies of the low-temperature growth of chromia and alumina [J]. Surface and Coatings Technology, 1999, 116-119: 699-704.
[72] EKLUND P, SRIDHARAN M, SILLASSEN M, et al. α-Cr2O3 template-texture effect on α-Al2O3 thin-film growth [J]. Thin Solid Films, 2008, 516(21): 7447-7450.
[73] ANDERSSON J M, WALLIN E, HELMERSSON U, et al. Phase control of Al2O3 thin films grown at low temperatures [J]. Thin Solid Films, 2006, 513(1): 57-59.
[74] DIECHLE D, STUEBER M, LEISTE H, et al. Combinatorial approach to the growth of α-(Al1-x, Crx) 2O3 solid solution strengthened thin films by reactive r. f. magnetron sputtering [J]. Surface and Coatings Technology, 2010, 204(20): 3258-3264.
[75] DIECHLE D. Herstellung und charakterisierung oxidbasierter PVD-hartstoffschichten in den stoffsystemen Al-Cr-O und Al-Cr-O-N [D]. Karlsruher: Karlsruher Institut für Technologie, 2012.
[76] RAMM J, ANTE M, BACHMANN T, et al. Pulse enhanced electron emission (P3eTM) arc evaporation and the synthesis of wear resistant Al-Cr-O coatings in corundum structure [J]. Surface and Coatings Technology, 2007, 202(4): 876-883.
[77] KOLLER C M, DALBAUER V, SCHMELZ A, et al. Structure, mechanical properties, and thermal stability of arc evaporated (Al1-xCrx) 2O3 coatings [J]. Surface and Coatings Technology, 2018, 342: 37-47.
[78] DALBAUER V, RAMM J, KOLOZSVáRI S, et al. On the phase evolution of arc evaporated Al-Cr-based intermetallics and oxides [J]. Thin Solid Films, 2017, 644: 120-128.
[79] KOLLER C M, GLATZ S A, KOLOZSVáRI S, et al. Influence of substrate bias on structure and mechanical properties of arc evaporated (Al, Cr) 2O3 and (Al, Cr, Fe) 2O3 coatings [J]. Surface and Coatings Technology, 2017, 319: 386-393.
[80] NAJAFI H, KARIMI A, DESSARZIN P, et al. Formation of cubic structured (Al1-xCrx) 2+ δO3 and its dynamic transition to corundum phase during cathodic arc evaporation [J]. Surface and Coatings Technology, 2013, 214: 46-52.
[81] KOLLER C M, KOUTNá N, RAMM J, et al. First principles studies on the impact of point defects on the phase stability of (AlxCr1-x) 2O3 solid solutions [J]. AIP Advances, 2016, 6(2): 025002.
[82] KOLLER C M, RAMM J, KOLOZSVáRI S, et al. Corundum-type Fe-doped cathodic arc evaporated Al-Cr-O coatings [J]. Scripta Materialia, 2015, 97: 49-52.
[83] PAULITSCH J, RACHBAUER R, RAMM J, et al. Influence of Si on the target oxide poisoning during reactive arc evaporation of (Al, Cr) 2O3 coatings [J]. Vacuum, 2014, 100: 29-32.
[84] LANDäLV L, GöTHELID E, JENSEN J, et al. Influence of Si doping and O2 flow on arc-deposited (Al, Cr) 2O3 coatings [J]. Journal of Vacuum Science & Technology A, 2019, 37(6): 061516.
[85] LIU H, DU H, XIAN G, et al. Ab-initio calculations of corundum structured α-(Al0.75Cr0.22Me0.03) 2O3 compounds (Me=Si, Fe, Mn, Ti, V and Y) [J]. Computational Materials Science, 2022, 212: 111601.
[86] KOLLER C M, DALBAUER V, KIRNBAUER A, et al. Impact of Si and B on the phase stability of cathodic arc evaporated Al0.70Cr0.30-based oxides [J]. Scripta Materialia, 2018, 152: 107-111.
[87] KOLLER C M, KIRNBAUER A, KOLOZSVáRI S, et al. Impact of morphology and phase composition on mechanical properties of α-structured (Cr, Al) 2O3/(Al, Cr, X) 2O3 multilayers [J]. Scripta Materialia, 2018, 146: 208-212.
[88] KOLLER C M, STUEBER M, MAYRHOFER P-H. Progress in the synthesis of Al- and Cr-based sesquioxide coatings for protective applications [J]. Journal of Vacuum Science & Technology A, 2019, 37(6): 060802.
[89] ÅSTRAND M, SELINDER T I, FIETZKE F, et al. PVD-Al2O3-coated cemented carbide cutting tools [J]. Surface and Coatings Technology, 2004, 188-189: 186-192.
[90] NOHAVA J, DESSARZIN P, KARVANKOVA P, et al. Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures [J]. Tribology International, 2015, 81: 231-239.
[1] 王启民, 张小波, 张世宏, 王成勇, 伍尚华. 高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J]. 广东工业大学学报, 2013, 30(4): 1-13.
[2] 何玉定; 胡社军; 谢光荣; . TiN涂层应用及研究进展[J]. 广东工业大学学报, 2005, 22(2): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!