广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 52-61.doi: 10.12052/gdutxb.230147

• 精密制造技术与装备 • 上一篇    下一篇

基于扰动转化补偿的恒力控制部件设计与控制

姜传星, 杨志军, 陈新, 白有盾   

  1. 广东工业大学 省部共建精密电子制造技术与装备国家重点实验室, 广东 广州 510006
  • 收稿日期:2023-09-19 出版日期:2023-11-25 发布日期:2023-11-08
  • 通信作者: 白有盾(1986-),男,讲师,博士,主要研究方向为精密运动规划与控制,E-mail:youdun.bai@gdut.edu.cn
  • 作者简介:姜传星(1982-),男,博士研究生,主要研究方向为电机控制
  • 基金资助:
    国家重点研发计划资助项目(2022YFB4701001);国家自然科学基金资助项目(51875108, 51905107);佛山市南海区重点领域科技攻关项目(2230032004637);佛山市南海区蓝海人才计划项目(2030032000185)

Design and Control of Constant Force Control Components Based on Disturbance Conversion Compensation

Jiang Chuan-xing, Yang Zhi-jun, Chen Xin, Bai You-dun   

  1. State Key Laboratory for Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-09-19 Online:2023-11-25 Published:2023-11-08

摘要: 针对机械导轨式力控系统精度受非线性摩擦影响的问题,本文提出了一种将摩擦扰动转化为弹性扰动的设计方法,解决了摩擦死区和静摩擦力补偿难的问题。具体做法是,将力控执行机构设计成用柔性铰链组连接的框架和工作平台。当驱动力小于摩擦力时,位移由柔性铰链弹性变形产生,消除了摩擦死区。非线性摩擦扰动转化为柔性铰链弹性变形扰动,通过柔性铰链的变形量和变形速率,计算出弹性力和阻尼力进行实时补偿,解决了摩擦力补偿问题。通过实验表明,摩擦扰动转化设计,通过量测补偿,最终将力控精度提高到0.08 N,比原来提高20~50倍,是一般气浮式精度(1 N) 的10倍以上,并且保持了电控系统响应快、成本低的优势。

关键词: 扰动转化, 恒力控制, 补偿, 机构设计

Abstract: Constant force control is significant for robot griding or polishing. Due to the influence of guide rail friction, the existing high precision force control employs air bearing and pneumatic control. Aiming at the problem that the precision of mechanical guideway force control system is affected by nonlinear friction, a design method is proposed that converts friction disturbance into elastic disturbance, which solves the problems of friction dead zone and static friction compensation. Specifically, the force control actuator is designed as a frame and working platform connected by a flexible hinge group. When the driving force is less than the friction force, the displacement is completely generated by the elastic deformation of the flexure hinge, eliminating the friction dead zone. The nonlinear friction disturbance is converted into the elastic deformation disturbance of the flexure hinge. Through the deformation amount and deformation rate of the flexure hinge, the elastic force and damping force are calculated for real-time compensation, which solves the problem of friction compensation. The experiment shows that the friction disturbance conversion design reduces the influence of friction, finally improves the force control accuracy to 0.08 N through measurement and compensation, which is 20~50 N times higher than the original, more than 10 times higher than the general air flotation accuracy, and maintains the advantages of fast response and low cost of the electronic control system.

Key words: disturbance transformation, constant force control, compensation, mechanism design

中图分类号: 

  • TH122
[1] MOHAMMAD A E K, HONG J, WANG D, et al. Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications [J]. Robotics and Computer-Integrated Manufacturing, 2019, 55: 65-75.
[2] HONG J, MOHAMMAD A E K, WANG D. Improved design of the end-effector for macro-mini robotic polishing systems[C]// Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering. Paris: ACM, 2017: 36-41.
[3] MOHAMMAD A E K, HONG J, WANG D. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach [J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 54-65.
[4] LI J, GUAN Y, CHEN H, et al. A high-bandwidth end-effector with active force control for robotic polishing [J]. IEEE Access, 2020, 8: 169122-169135.
[5] CHEN F, ZHAO H, LI D, et al. Contact force control and vibration suppression in robotic polishing with a smart end effector [J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 391-403.
[6] MA Z, HONG G S, ANG M H, et al. Design and control of an end-effector module for industrial finishing applications[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Banff, AB: IEEE, 2016: 339-344.
[7] MA Z, SEE H H, HONG G S, et al. Control and modeling of an end-effector in a macro-mini manipulator system for industrial applications[C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich: IEEE, 2017: 676-681.
[8] WEI Y, XU Q. Design of a new robot end-effector based on compliant constant-force mechanism[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, 2021: 7601-7606.
[9] WEI Y, XU Q. Design of a new passive end-effector based on constant-force mechanism for robotic polishing [J]. Robotics and Computer-Integrated Manufacturing, 2022, 74: 102278.
[10] ZHU R, YANG G, FANG Z, et al. Kinematic design of a 3-DOF force-controlled end-effector with flexure joints for robotic finishing applications[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Hong Kong: IEEE, 2019: 1473-1478.
[11] YANG G, ZHU R, FANG Z, et al. Kinematic design of a 2R1T robotic end-effector with flexure joints [J]. IEEE Access, 2020, 8: 57204-57213.
[12] ZHANG J, ZHAO L, LI L, et al. Design of passive constant-force end-effector for robotic polishing of optical reflective mirrors [J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 141.
[13] CHEN Y H, LAN C C. An adjustable constant-force mechanism for adaptive end-effector operations [J]. Journal of Mechanical Design, 2012, 134(3): 031005.
[14] ZHANG X, FU Z, WANG G. Design and development of a novel 3-DOF parallel robotic polishing end-effector[C]//2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). Chongqing: IEEE, 2021: 352-357.
[15] 赵亚平, 杨桂林, 杨巍, 等. 气电混合式机器人力控末端执行器研究[J]. 组合机床与自动化加工技术, 2016(12): 103-106.
ZHAO Y P, YANG G L, YANG W, et al. Research on a pneumoelectric robotic end-effector with force control [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(12): 103-106.
[16] 刘立涛, 杨桂林, 柳丽, 等. 气电混合式力控末端执行器接触力控制研究[J]. 机械设计与研究, 2020, 36(5): 33-37.
LIU L T, YANG G L, LIU L, et al. Research on the contact force control of pneumatic-electric hybrid force-controlled end-effector[J], Machine Design and Research, 2020, 36(5): 33-37.
[17] WHITNEY D E. Historical perspective and state of the art in robot force control [J]. The International Journal of Robotics Research, 1987, 6(1): 3-14.
[18] 李正义. 机器人与环境间力/位置控制技术研究与应用[D]. 武汉: 华中科技大学, 2011.
[19] SCHUMACHER M, WOJTUSCH J, BECKERLE P, et al. An introductory review of active compliant control [J]. Robotics and Autonomous Systems, 2019, 119: 185-200.
[20] 葛吉民, 邓朝晖, 李尉, 等. 机器人磨抛力柔顺控制研究进展[J]. 中国机械工程, 2021, 32(18): 2217-2230.
GE J M, DENG Z H, LI W, el al. Research progresses of robot grinding and polishing force compliance controls [J]. China Mechanical Engineering, 2021, 32(18): 2217-2230.
[21] 甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34(10): 2134-2142.
GAN Y H, DUAN J J, DAI X Z. Adaptive variable impedance control for robot force tracking in unstructured environment [J]. Control and Decision, 2019, 34(10): 2134-2142.
[22] LOPES A, ALMEIDA F. A force-impedance controlled industrial robot using an active robotic auxiliarydevice [J]. Robotics and Computer-Integrated Manufacturing, 2008, 24(3): 299-309.
[23] LEW J Y. Contact control of flexible micro/macro-manipulators[C]// Proceedings of International Conference on Robotics and Automation. Albuquerque, NM: IEEE, 1997: 2850-2855.
[24] BONE G M, ELBESTAWI M A. Active end effector control of a low precision robot in deburring [J]. Robotics and Computer-Integrated Manufacturing, 1991, 8(2): 87-96.
[25] TIAN Y, SHIRINZADEH B, ZHANG D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design [J]. Precision Engineering, 2010, 34(3): 408-418.
[26] LI R, YANG Z, CHEN G, et al. Analytical solutions for nonlinear deflections of corner-fillet leaf-springs [J]. Mechanism and Machine Theory, 2021, 157: 104182.
[27] LI R, YANG Z, CAI B, et al. A compliant guiding mechanism utilizing orthogonally oriented flexures with enhanced stiffness in Degrees-of-Constraint [J]. Mechanism and Machine Theory, 2022, 167: 104555.
[28] 李瑞奇. 倒圆角弹片式柔性铰链非线性变形分析、优化与应用[D]. 广州: 广东工业大学, 2021.
[1] 邹恒, 高军礼, 张树文, 宋海涛. 围棋机器人落子指引装置的设计与实现[J]. 广东工业大学学报, 2023, 40(01): 77-82,91.
[2] 王江奇, 张淼, 李悦, 苏腾. 一种拓扑不对称的三相电力有源滤波器研究[J]. 广东工业大学学报, 2023, 40(01): 100-106.
[3] 梁世雍, 于兆勤, 黄文彬, 肖成龙. 电火花钻削高精度盲孔实验研究[J]. 广东工业大学学报, 2020, 37(04): 75-78.
[4] 张淼, 苏协飞. 基于比例谐振和谐波补偿控制技术的单相逆变并网研究[J]. 广东工业大学学报, 2016, 33(05): 59-64.
[5] 唐雄民, 杜芳洲, 陈思哲. 一种新型单相并联型有源电力滤波器实现方法的研究[J]. 广东工业大学学报, 2016, 33(03): 11-18.
[6] 鲁叶,彭世国. T-S模糊随机时滞系统的鲁棒控制[J]. 广东工业大学学报, 2013, 30(1): 68-72.
[7] 宁寻安1, 周剑波1, 李仕文2, 张凝1. 环氧氯丙烷生产装置的火灾爆炸危险性分析与评价[J]. 广东工业大学学报, 2011, 28(2): 1-5.
[8] 廖辉, 吴百海, 肖体兵, 李卫华. 海洋钻柱运动补偿的非线性动力学分析[J]. 广东工业大学学报, 2011, 28(1): 1-4.
[9] 李学文, 曹 平, 刘 俊, 孙可平. 基于改进的STATCOM控制策略的研究[J]. 广东工业大学学报, 2010, 27(4): 92-95.
[10] 李 享, 胡义华, 王银海, 符楚君, 吴浩怡, 康逢文, 居桂方, 牟中飞. Nax Sr1-2x MoO4:Eux3+的制备及其发光性能的研究[J]. 广东工业大学学报, 2010, 27(4): 32-35.
[11] 刘洪江, 汪仁煌, 李学聪. 毛杆图像的一种灰度校正算法[J]. 广东工业大学学报, 2010, 27(1): 47-50.
[12] 黄英杰; 陈玮; 邓则名; 王钦若; 李军; 杜玉晓;. 钢板彩涂过程中张力控制系统的研究[J]. 广东工业大学学报, 2006, 23(4): 45-49.
[13] 杨钧; . 带负载力矩补偿观测器的直流调速系统[J]. 广东工业大学学报, 2006, 23(2): 58-62.
[14] 林均淳; . 具有校正功能的温度测量仪表[J]. 广东工业大学学报, 2003, 20(2): 5-9.
[15] 苏平. 无稳态速度误差的V/f控制.感应电动机驱动系统[J]. 广东工业大学学报, 1995, 12(S1): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!