广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 52-61.doi: 10.12052/gdutxb.230147
姜传星, 杨志军, 陈新, 白有盾
Jiang Chuan-xing, Yang Zhi-jun, Chen Xin, Bai You-dun
摘要: 针对机械导轨式力控系统精度受非线性摩擦影响的问题,本文提出了一种将摩擦扰动转化为弹性扰动的设计方法,解决了摩擦死区和静摩擦力补偿难的问题。具体做法是,将力控执行机构设计成用柔性铰链组连接的框架和工作平台。当驱动力小于摩擦力时,位移由柔性铰链弹性变形产生,消除了摩擦死区。非线性摩擦扰动转化为柔性铰链弹性变形扰动,通过柔性铰链的变形量和变形速率,计算出弹性力和阻尼力进行实时补偿,解决了摩擦力补偿问题。通过实验表明,摩擦扰动转化设计,通过量测补偿,最终将力控精度提高到0.08 N,比原来提高20~50倍,是一般气浮式精度(1 N) 的10倍以上,并且保持了电控系统响应快、成本低的优势。
中图分类号:
[1] MOHAMMAD A E K, HONG J, WANG D, et al. Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications [J]. Robotics and Computer-Integrated Manufacturing, 2019, 55: 65-75. [2] HONG J, MOHAMMAD A E K, WANG D. Improved design of the end-effector for macro-mini robotic polishing systems[C]// Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering. Paris: ACM, 2017: 36-41. [3] MOHAMMAD A E K, HONG J, WANG D. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach [J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 54-65. [4] LI J, GUAN Y, CHEN H, et al. A high-bandwidth end-effector with active force control for robotic polishing [J]. IEEE Access, 2020, 8: 169122-169135. [5] CHEN F, ZHAO H, LI D, et al. Contact force control and vibration suppression in robotic polishing with a smart end effector [J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 391-403. [6] MA Z, HONG G S, ANG M H, et al. Design and control of an end-effector module for industrial finishing applications[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Banff, AB: IEEE, 2016: 339-344. [7] MA Z, SEE H H, HONG G S, et al. Control and modeling of an end-effector in a macro-mini manipulator system for industrial applications[C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich: IEEE, 2017: 676-681. [8] WEI Y, XU Q. Design of a new robot end-effector based on compliant constant-force mechanism[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, 2021: 7601-7606. [9] WEI Y, XU Q. Design of a new passive end-effector based on constant-force mechanism for robotic polishing [J]. Robotics and Computer-Integrated Manufacturing, 2022, 74: 102278. [10] ZHU R, YANG G, FANG Z, et al. Kinematic design of a 3-DOF force-controlled end-effector with flexure joints for robotic finishing applications[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Hong Kong: IEEE, 2019: 1473-1478. [11] YANG G, ZHU R, FANG Z, et al. Kinematic design of a 2R1T robotic end-effector with flexure joints [J]. IEEE Access, 2020, 8: 57204-57213. [12] ZHANG J, ZHAO L, LI L, et al. Design of passive constant-force end-effector for robotic polishing of optical reflective mirrors [J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 141. [13] CHEN Y H, LAN C C. An adjustable constant-force mechanism for adaptive end-effector operations [J]. Journal of Mechanical Design, 2012, 134(3): 031005. [14] ZHANG X, FU Z, WANG G. Design and development of a novel 3-DOF parallel robotic polishing end-effector[C]//2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). Chongqing: IEEE, 2021: 352-357. [15] 赵亚平, 杨桂林, 杨巍, 等. 气电混合式机器人力控末端执行器研究[J]. 组合机床与自动化加工技术, 2016(12): 103-106. ZHAO Y P, YANG G L, YANG W, et al. Research on a pneumoelectric robotic end-effector with force control [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(12): 103-106. [16] 刘立涛, 杨桂林, 柳丽, 等. 气电混合式力控末端执行器接触力控制研究[J]. 机械设计与研究, 2020, 36(5): 33-37. LIU L T, YANG G L, LIU L, et al. Research on the contact force control of pneumatic-electric hybrid force-controlled end-effector[J], Machine Design and Research, 2020, 36(5): 33-37. [17] WHITNEY D E. Historical perspective and state of the art in robot force control [J]. The International Journal of Robotics Research, 1987, 6(1): 3-14. [18] 李正义. 机器人与环境间力/位置控制技术研究与应用[D]. 武汉: 华中科技大学, 2011. [19] SCHUMACHER M, WOJTUSCH J, BECKERLE P, et al. An introductory review of active compliant control [J]. Robotics and Autonomous Systems, 2019, 119: 185-200. [20] 葛吉民, 邓朝晖, 李尉, 等. 机器人磨抛力柔顺控制研究进展[J]. 中国机械工程, 2021, 32(18): 2217-2230. GE J M, DENG Z H, LI W, el al. Research progresses of robot grinding and polishing force compliance controls [J]. China Mechanical Engineering, 2021, 32(18): 2217-2230. [21] 甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34(10): 2134-2142. GAN Y H, DUAN J J, DAI X Z. Adaptive variable impedance control for robot force tracking in unstructured environment [J]. Control and Decision, 2019, 34(10): 2134-2142. [22] LOPES A, ALMEIDA F. A force-impedance controlled industrial robot using an active robotic auxiliarydevice [J]. Robotics and Computer-Integrated Manufacturing, 2008, 24(3): 299-309. [23] LEW J Y. Contact control of flexible micro/macro-manipulators[C]// Proceedings of International Conference on Robotics and Automation. Albuquerque, NM: IEEE, 1997: 2850-2855. [24] BONE G M, ELBESTAWI M A. Active end effector control of a low precision robot in deburring [J]. Robotics and Computer-Integrated Manufacturing, 1991, 8(2): 87-96. [25] TIAN Y, SHIRINZADEH B, ZHANG D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design [J]. Precision Engineering, 2010, 34(3): 408-418. [26] LI R, YANG Z, CHEN G, et al. Analytical solutions for nonlinear deflections of corner-fillet leaf-springs [J]. Mechanism and Machine Theory, 2021, 157: 104182. [27] LI R, YANG Z, CAI B, et al. A compliant guiding mechanism utilizing orthogonally oriented flexures with enhanced stiffness in Degrees-of-Constraint [J]. Mechanism and Machine Theory, 2022, 167: 104555. [28] 李瑞奇. 倒圆角弹片式柔性铰链非线性变形分析、优化与应用[D]. 广州: 广东工业大学, 2021. |
[1] | 邹恒, 高军礼, 张树文, 宋海涛. 围棋机器人落子指引装置的设计与实现[J]. 广东工业大学学报, 2023, 40(01): 77-82,91. |
[2] | 王江奇, 张淼, 李悦, 苏腾. 一种拓扑不对称的三相电力有源滤波器研究[J]. 广东工业大学学报, 2023, 40(01): 100-106. |
[3] | 梁世雍, 于兆勤, 黄文彬, 肖成龙. 电火花钻削高精度盲孔实验研究[J]. 广东工业大学学报, 2020, 37(04): 75-78. |
[4] | 张淼, 苏协飞. 基于比例谐振和谐波补偿控制技术的单相逆变并网研究[J]. 广东工业大学学报, 2016, 33(05): 59-64. |
[5] | 唐雄民, 杜芳洲, 陈思哲. 一种新型单相并联型有源电力滤波器实现方法的研究[J]. 广东工业大学学报, 2016, 33(03): 11-18. |
[6] | 鲁叶,彭世国. T-S模糊随机时滞系统的鲁棒控制[J]. 广东工业大学学报, 2013, 30(1): 68-72. |
[7] | 宁寻安1, 周剑波1, 李仕文2, 张凝1. 环氧氯丙烷生产装置的火灾爆炸危险性分析与评价[J]. 广东工业大学学报, 2011, 28(2): 1-5. |
[8] | 廖辉, 吴百海, 肖体兵, 李卫华. 海洋钻柱运动补偿的非线性动力学分析[J]. 广东工业大学学报, 2011, 28(1): 1-4. |
[9] | 李学文, 曹 平, 刘 俊, 孙可平. 基于改进的STATCOM控制策略的研究[J]. 广东工业大学学报, 2010, 27(4): 92-95. |
[10] | 李 享, 胡义华, 王银海, 符楚君, 吴浩怡, 康逢文, 居桂方, 牟中飞. Nax Sr1-2x MoO4:Eux3+的制备及其发光性能的研究[J]. 广东工业大学学报, 2010, 27(4): 32-35. |
[11] | 刘洪江, 汪仁煌, 李学聪. 毛杆图像的一种灰度校正算法[J]. 广东工业大学学报, 2010, 27(1): 47-50. |
[12] | 黄英杰; 陈玮; 邓则名; 王钦若; 李军; 杜玉晓;. 钢板彩涂过程中张力控制系统的研究[J]. 广东工业大学学报, 2006, 23(4): 45-49. |
[13] | 杨钧; . 带负载力矩补偿观测器的直流调速系统[J]. 广东工业大学学报, 2006, 23(2): 58-62. |
[14] | 林均淳; . 具有校正功能的温度测量仪表[J]. 广东工业大学学报, 2003, 20(2): 5-9. |
[15] | 苏平. 无稳态速度误差的V/f控制.感应电动机驱动系统[J]. 广东工业大学学报, 1995, 12(S1): 70-74. |
|