广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 88-94.doi: 10.12052/gdutxb.230139

• 催化与能源材料 • 上一篇    下一篇

Al2O3原位修饰Al集流体促进钠均匀沉积/剥离

唐芳, 夏荣庆, 芮先宏   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2023-09-08 出版日期:2023-11-25 发布日期:2023-11-08
  • 通信作者: 芮先宏(1985-),男,教授,博士,主要研究方向为新型储能材料与器件,E-mail:xhrui@gdut.edu.cn
  • 作者简介:唐芳(1994-),女,博士研究生,主要研究方向为钠金属负极集流体改性
  • 基金资助:
    国家自然科学基金资助项目(51972067)

Al2O3 In-situ Modified Al Current Collectors for Uniform Na Plating/Stripping

Tang Fang, Xia Rong-qing, Rui Xian-hong   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-09-08 Online:2023-11-25 Published:2023-11-08

摘要: 钠金属电池因其高理论比容量和低成本被认为是最具发展前景的大规模储能电池之一。然而,钠金属的高反应活性,易导致固体电解质界面膜不稳定、钠不均匀沉积、枝晶生长等问题。为此,本文采用简单的一步煅烧法制备了一种Al2O3原位修饰的Al箔集流体(Al@Al2O3),促进钠均匀沉积/剥离。在充放电过程中,Al2O3被钠化形成一层高离子电导率的Na-Al-O膜,其不仅能稳定电极/电解液界面,还能调节集流体表面的成核行为,降低成核能垒、提高离子传质动力学,实现无枝晶均匀沉积和长循环寿命。结果表明,在3 mA·cm-2电流密度和3 mAh·cm-2面容量下,Al@Al2O3能以99.6%的平均库伦效率使钠稳定沉积/剥离50次;在1 mA·cm-2电流密度和1 mAh·cm-2面容量条件下,Na-Al@Al2O3‖Na-Al@Al2O3对称电池能稳定循环1000 h;甚至在10 C的高电流密度下,NVP‖Na-Al@Al2O3全电池也能稳定循环250次,且容量保持率高达94%。

关键词: 钠金属电池, 钠金属负极, 无枝晶, 高界面稳定性, Al@Al2O3

Abstract: Na metal batteries are considered to be one of the most promising large-scale energy storage batteries due to their high theoretical specific capacity and low cost. However, the high reactivity of sodium metal can easily lead to problems such as instability of the solid electrolyte interface (SEI) film, uneven deposition of sodium, and dendrite growth. Here, an Al2O3 in-situ modified Al foil current collector (Al@Al2O3) was fabricated by a facile one-step calcination method to promote uniform Na deposition/stripping. During the discharge process, Al2O3 is sodiumified to form a Na-Al-O film with high ion conductivity, which not only stabilizes the electrode/electrolyte interface, but also regulates the nucleation behavior on the current collector surface, reducing the formation of nuclear energy barrier, improving ion mass transfer kinetics, and achieving uniform deposition of dendrite-free sodium and long cycle life. The results show that Al@Al2O3 can stably deposit/strip sodium for 50 times with an average Coulombic efficiency of 99.6% under 3 mA·cm-2/3 mAh·cm-2; and that the Na-Al@Al2O3‖Na-Al@Al2O3 symmetric battery can be cycled stably for 1000 h at 1 mA·cm-2 and 1 mAh·cm-2. Even at a high current density of 10 C, the NVP‖Na-Al@Al2O3 full cell can be cycled stably for 250 cycles with a high capacity retention of 94%.

Key words: sodium metal battery, sodium metal anode, dendrite-free, high interfacial stability, Al@Al2O3

中图分类号: 

  • TQ323.7
[1] ZHOU Y, ZHANG X, DING Y, et al. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries [J]. Advanced Materials, 2020, 32(48): e2005763.
[2] ZHOU H, LI X, LI Y, et al. Applications of MxSey (M = Fe, Co, Ni) and their composites in electrochemical energy storage and conversion [J]. Nanomicro Letters, 2019, 11(1): 40.
[3] ZHANG Z, LI L, ZHU Z, et al. Homogenous sdiophilic MoS2/nitrogen-doped carbon nanofibers to stabilize sodium deposition for sodium metal batteries [J]. Energy Storage Materials, 2022, 53: 363-370.
[4] ZHAO R, SUN N, XU B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries [J]. Small Structures, 2021, 2(12): 2100132.
[5] XIA X, CHEN K, XU S, et al. Robust artificial interlayer with high ionic conductivity and mechanical strength toward long-life Na-metal batteries [J]. Small Science, 2023, 3: 2300038.
[6] XIA X, DU C F, ZHONG S, et al. Homogeneous Na deposition enabling high-energy Na-metal batteries [J]. Advanced Functional Materials, 2021, 32(10): 2110280.
[7] YAN K, ZHAO S, ZHANG J, et al. Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix [J]. Nano Letters, 2020, 20(8): 6112-6119.
[8] AKHTAR N, SUN X, YASIR AKRAM M, et al. A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2021, 52: 310-317.
[9] CHEN Y, KE X, CHENG Y, et al. Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering [J]. Energy Storage Materials, 2020, 26: 56-64.
[10] DING J F, XU R, YAN C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries [J]. Journal of Energy Chemistry, 2021, 59: 306-319.
[11] FAN L, LI X. Recent advances in effective protection of sodium metal anode [J]. Nano Energy, 2018, 53: 630-642.
[12] FANG H, GAO S, ZHU Z, et al. Recent progress and perspectives of sodium metal anodes for rechargeable batteries [J]. Chemical Research in Chinese Universities, 2021, 37(2): 189-199.
[13] GUAN J, LI N, YU L. Artificial interphase layers for lithium metal anode [J]. Acta Physico Chimica Sinica, 2021, 37(2): 2009011.
[14] XIA X, LV X, YAO Y, et al. A sodiophilic VN interlayer stabilizing a Na metal anode [J]. Nanoscale Horizons, 2022, 7(8): 899-907.
[15] LUO Z, TAO S, TIAN Y, et al. Robust artificial interlayer for columnar sodium metal anode [J]. Nano Energy, 2022, 97: 107203.
[16] HE X, JIN S, MIAO L, et al. A 3D hydroxylated mxene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes [J]. Angewandte Chemie International Edition, 2020, 59(38): 16705-16711.
[17] LEE K, LEE Y J, LEE M J, et al. A 3D hierarchical host with enhanced sodiophilicity enabling anode-free sodium-metal batteries [J]. Advanced Materials, 2022, 34: e2109767.
[18] NI D, SHEN Y, SUN W, et al. Design of 3D topological nodal-net porous carbon for sodium-ion battery anodes [J]. Journal of Materials Chemistry A, 2022, 10(14): 7754-7763.
[19] LIU S, TANG S, ZHANG X, et al. Porous al current collector for dendrite-free Na metal anodes [J]. Nano Letters, 2017, 17(9): 5862-5868.
[20] TANG F, XIA R, CHEN D, et al. Rapid and reversible Na deposition onto Al nanosheet arrays [J]. Journal of Energy Chemistry, 2022, 74: 1-7.
[21] LUO W, LIN C F, ZHAO O, et al. Ultrathin surface coating enables the stable sodium metal anode [J]. Advanced Energy Materials, 2016, 7(2): 1601526.
[22] ZHAO Y, GONCHAROVA L V, LUSHINGTON A, et al. Superior stable and long life sodium metal anodes achieved by atomic layer deposition [J]. Advanced Materials, 2017, 29(18): 1606663.
[23] HAN X, LIU Y, JIA Z, et al. Atomic-layer-deposition oxide nanoglue for sodium ion batteries [J]. Nano Letters, 2013, 14(1): 139-147.
[24] JUNG S C, KIM H-J, CHOI J W, et al. Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion [J]. Nano Letters, 2014, 14(11): 6559-6563.
[1] 刘存生, 刘屹东, 廖松义, 黄兴文, 李清玲, 宋道远, 闵永刚. 聚酰亚胺基复合材料在电池电极中的研究进展[J]. 广东工业大学学报, 2022, 39(03): 125-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!