广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 106-113,184.doi: 10.12052/gdutxb.230114

• 催化与能源材料 • 上一篇    下一篇

Zn/Fe纳米颗粒共嵌入碳纳米管提高氧还原反应性能

吴梦雪1, 马金福2, 刘子逸2, 刘慧泽2, 王冠东2, 陈轩毅1, 施志聪1   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510006;
    2. 北方民族大学 材料科学与工程学院, 宁夏 银川 750021
  • 收稿日期:2023-08-25 出版日期:2023-11-25 发布日期:2023-11-08
  • 通信作者: 马金福(1980-),教授,博士,主要研究方向为新能源材料、燃料电池,E-mail:ma_jinfu@nun.edu.cn;施志聪(1976-),男,教授,博士,主要研究方向为新能源材料、新型电池、电化学测试技术,E-mail:zhicong@gdut.edu.cn
  • 作者简介:吴梦雪(1997-),女,博士研究生,主要研究方向为金属-空气电池,E-mail:wumengxue1741@163.com
  • 基金资助:
    国家自然科学基金资助项目(21865002);宁夏自然科学基金资助项目(2022AAC02044)

Zn/Fe Nanoparticles Co-embedded with Carbon Nanotubes Improve the Oxygen Reduction Reaction Performance

Wu Meng-xue1, Ma Jin-fu2, Liu Zi-yi2, Liu Hui-ze2, Wang Guan-dong2, Chen Xuan-Yi1, Shi Zhi-cong1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
  • Received:2023-08-25 Online:2023-11-25 Published:2023-11-08

摘要: 开发低成本、高稳定、高催化活性氧化还原反应(Oxygen Reduction Reaction, ORR)的非贵金属催化剂对燃料电池和金属-空气电池的应用至关重要。本文研究了以ZIF-8为前驱体一步合成ZnFe纳米颗粒嵌入N、S掺杂碳纳米管的复合催化剂(ZnS-FeS-Fe3C/S, NCNT)。通过电化学测试确定最优煅烧温度后的样品ZFF/S, NCNT-8的起始电位Eo为0.99 V vs. RHE和半波电位E1/2为0.84 V vs. RHE,并且与商业Pt/C相当,具有良好的甲醇耐受性和长期稳定性。同时也提出S、N共掺杂碳纳米管(Carbon Nanotube, CNT) 和额外的ZnS、FeS和Fe3C提供活性位点可以提高ORR催化性能。文中所采用的原位生长CNT方法,可为制备燃料电池和金属-空气电池的阴极催化剂提供思路。

关键词: 氧还原反应, 氮、硫掺杂碳纳米管, ZIF-8, 热解, 碳材料

Abstract: The development of low-cost, highly stable, and catalytically active oxygen reduction reaction (ORR) non-precious metal catalysts is essential for fuel cells and metal-air batteries applications. In this study, the one-step synthesis of composite catalysts of ZnFe nanoparticles embedded with nitrogen and sulfur doped carbon nanotubes (ZnS-FeS-Fe3C/S, NCNT) was reported using ZIF-8 as precursor. The sample of ZFF/S, NCNT-8 after the optimal calcination temperature was determined by electrochemical tests to be onset potential of 0.99 V vs. RHE and a half-wave potential of 0.84 V vs. RHE, as well as a good methanol tolerance and long-term durability comparable to commercial Pt/C. It is also proposed that S, N co-doped carbon nanotube (CNT) and additional ZnS, FeS and Fe3C providing active sites can enhance the ORR catalytic performance. The in-situ growth CNT method used in the study can provide ideas for the preparation of cathode catalysts for fuel cells and metal-air batteries.

Key words: oxygen reduction reaction, N, S doped carbon nanotubes, ZIF-8, pyrolysis, carbon materials

中图分类号: 

  • TM912
[1] BU L Z, GUO S J, ZHANG X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis [J]. Nature Communications, 2016, 7: 11850.
[2] DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells [J]. Nature, 2012, 486: 43-51.
[3] SUNTIVICH J, PERRY’ E N E, GASTEIGER H A, et al. The influence of the cation on the oxygen reduction and evolution activities of oxide surfaces in alkaline electrolyte [J]. Electrocatalysis, 2012, 4(1): 49-55.
[4] CHEN X, MA D D, CHEN B, et al. Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction [J]. Applied Catalysis B:Environmental, 2020, 267: 118720.
[5] XIA B Y, WU H B, LI N, et al. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties [J]. Angewandte Chemie, 2014, 54(12): 3797-3801.
[6] OUYANG C, NI B, SUN Z Y, et al. Boosting the ORR performance of modified carbon black by C-O bonds [J]. Chemical Science, 2019, 10(7): 2118-2123.
[7] SUN T, WANG J, QIU C T, et al. B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions [J]. Advanced Science, 2018, 5(7): 1800036.
[8] SON S, LIM D, NAM D, et al. N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction [J]. Journal of Solid State Chemistry, 2019, 274: 237-242.
[9] TANG B, WANG S K, LONG J L. Novel in-situ P-doped metal-organic frameworks derived cobalt and heteroatoms co-doped carbon matrix as high-efficient electrocatalysts [J]. International Journal of Hydrogen Energy, 2020, 45(58): 32972-32983.
[10] HOU Y, HUANG T Z, WEN Z H, et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions [J]. Advanced Energy Materials, 2014, 4(11): 1400337.
[11] LIU B, SHIOYAMA H, AKITA T, et al. Metal-organic framework as a template for porous carbon synthesis [J]. Journal of the American Chemical Society, 2008, 130(16): 5390-5391.
[12] XIA B Y, YAN Y, LI N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst [J]. Nature Energy, 2016, 1(1): 15006.
[13] SUN J, GUO N, SONG T, et al. Revealing the interfacial electron modulation effect of CoFe alloys with CoC encapsulated in N-doped CNTs for superior oxygen reduction [J]. Advanced Powder Materials, 2022, 1(3): 100023.
[14] MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices [J]. Journal of the American Chemical Society, 2015, 137(13): 4347-4357.
[15] MI X, GAO B, TAN X, et al. Preparation of iron and nitrogen co-doped carbon material Fe/N-CCM-T for oxygen reduction reaction [J]. International Journal of Hydrogen Energy, 2021, 46(7): 5332-5344.
[16] SHAN C S, FENG X, YANG J X, et al. Hierarchical porous carbon pellicles: electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance [J]. Carbon, 2020, 157: 308-315.
[17] JIANG R, CHEN X, DENG J X, et al. In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction [J]. Journal of Energy Chemistry, 2020, 47: 79-85.
[18] NAVEEN M H, SHIM K, HOSSAIN M S A, et al. Template free preparation of heteroatoms doped carbon spheres with trace fe for efficient oxygen reduction reaction and supercapacitor [J]. Advanced Energy Materials, 2017, 7(5): 1602002.
[19] WANG M R, YANG W J, LI X Z, et al. Atomically dispersed fe–heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction [J]. ACS Energy Letters, 2021, 6(2): 379-386.
[20] LIN L, ZHU Q, XU A W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions [J]. Journal of the American Chemical Society, 2014, 136(31): 11027-11033.
[21] ZHANG Z, XU X, ZHANG Z, et al. Surface index: identification of copper surface index by optical contrast (Adv. Mater. Interfaces 18/2018) [J]. Advanced Materials Interfaces, 2018, 5(18): 1870087.
[22] KIM J H, SA Y J, JEONG H Y, et al. Roles of Fe-Nx and Fe-Fe3C@C Species in Fe-N/C Electrocatalysts for Oxygen Reduction Reaction [J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9567-9575.
[23] VIRIEUX H S, TROEDEC M L, ARNAUD C G, et al. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description [J]. Journal of the American Chemical Society, 2012, 134(48): 19701-19708.
[24] LI J C, HOU P X, ZHAO S Y, et al. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions [J]. Energy & Environmental Science, 2016, 9(10): 3079-3084.
[25] LIU X J, YANG W X, CHEN L L, et al. Graphitic carbon nitride (g-C(3) N(4) ) -derived bamboo-like carbon nanotubes/Co nanoparticles hybrids for highly efficient electrocatalytic oxygen reduction [J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4463-4472.
[26] WU M C, GUO B K, NIE A M, et al. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zinc-air battery [J]. Journal of Colloid and Interface Science, 2020, 561: 585-592.
[27] ZHANG T, MAO S M, SUN P, et al. Nanosized FeS/ZnS heterojunctions derived using zeolitic imidazolate Framework-8 (ZIF-8) for pH-universal oxygen reduction and High-efficiency Zn-air battery [J]. Journal of Colloid and Interface Science, 2022, 608(1): 446-458.
[28] QI H C, FENG Y Y, CHI Z Z, et al. In situ encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-performance Zn-air batteries [J]. Nanoscale, 2019, 11: 21943-21952.
[29] LIU X, WANG L, ZHANG G Y, et al. Zinc assisted epitaxial growth of N-doped CNTs-based zeolitic imidazole frameworks derivative for high efficient oxygen reduction reaction in Zn-air battery [J]. Chemical Engineering Journal, 2021, 414: 127569.
[30] NIU W J, WANG Y P, HE J Z, et al. Highly stable nitrogen-doped carbon nanotubes derived from carbon dots and metal-organic frameworks toward excellent efficient electrocatalyst for oxygen reduction reaction [J]. Nano Energy, 2019, 63: 103788.
[31] ZHOU Q, YANG Y, YE Q, et al. Graphitic-nitrogen-enriched carbon skeleton with embedment of Fe3C for superior performance air cathode in zinc-air battery [J]. Materials Today Energy, 2023, 31: 101194.
[1] 熊涛, 李萍, 尹茜, 刘宇鑫, 陈师楚. 河道底泥和植物制备生物炭吸附磷的影响研究[J]. 广东工业大学学报, 2023, 40(03): 83-90.
[2] 刘存生, 刘屹东, 廖松义, 黄兴文, 李清玲, 宋道远, 闵永刚. 聚酰亚胺基复合材料在电池电极中的研究进展[J]. 广东工业大学学报, 2022, 39(03): 125-132.
[3] 曾丽珍,李伟善. 碳化钼作为微生物燃料电池阴极催化剂的研究[J]. 广东工业大学学报, 2013, 30(1): 110-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!