广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 69-78.doi: 10.12052/gdutxb.220132
张灵1, 李荣臻1, 郑苏2
Zhang Ling1, Li Rong-zhen1, Zheng Su2
摘要: 针对短文本长度过短、关键词偏少和标签信息利用不足造成的分类过程中面临特征稀疏和语义不明确的问题,提出了融合标签语义嵌入的图卷积网络模型。首先,在传统的术语频率和逆文档频率算法基础上,提出了融合单词所属文本的类间、类内分布关系的全局词频提取算法。其次,利用融合标签嵌入的方法,将每条训练文本与相对应的标签引入到同一个特征空间内,通过筛选聚合提取更能突显文本类别的近义词嵌入,作为文本图的文档节点的嵌入表示。最后,将文本图输入到图卷积神经网络学习后,获得的特征与预训练模型提取文本上下文的特征相融合,提升短文本的分类质量以及整个模型的泛化能力,在4个短文本数据集MR、web_snippets、R8和R52上对本文模型和14个基线算法进行了对比实验,结果表明本文提出的模型相比于对比模型具有更优的结果,在识别精度、召回率以及F1值上有着更好的表现。
中图分类号:
[1] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2014-09-08) [2022-08-20]. https://arxiv.org/abs/1409.2329v5. [2] TURKOGLU M, HANBAY D, SENGUR A. Multi-model L- STM-based convolutional neural networks for detection of apple diseases and pests [J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1): 3335-3345. [3] AGARAP A F. A neural network architecture combining gated recurrent unit (GRU) and support vector machine(SVM) for intrusion detection in network traffic data[EB/OL]. (2017-09-10) [2022-08-20]. https://arxiv.org/abs/1709.0302. [4] CANIZO M, TRIGUERO I, CONDE A, et al. Multi-head CNN-RNN for multi-time series anomaly detection: an ind- ustrial case study [J]. Neurocomputing, 2019, 363: 246-260. [5] KIM Y. Convolutional neural network for sentence classification[EB/OL]. arXiv: 1408.5882 (2014-09-03) [2022-08-20]. https://arxiv.org/abs/1408.5882. [6] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[EB/OL]. arXiv: 1605.05273(2016-06-08) [2022-08-20]. https://arxiv.org/abs/1605.05273. [7] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[C]//International Conference on Learning Representation. New Orleans: ICLR, 2019: 1-17. [8] KIPF, WELLING M, THOMAS N. Semi-supervisedclassification with graph convolutional networks[C]//International Conference on Learning Representations. Toulon, France: ICLR, 2017: 1-14. [9] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[C]//33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 7370-7377. [10] DRASKO R, BOZO K. Review spam detection using mac- hine learning[C]//23th International Scientific-Professional Conference on Information Technology. New Delhi, India: IT, 2018: 1-4. [11] BAKSHI R K, KAUR N, KAUR R, et al. Opinion mining and sentiment analysis[C]//Computing for Sustainable Glo-bal Development. New Delhi, India: INDIACom, 2016: 452-455. [12] BOUAZIZ A, DARTIGUES-PALLEZ C, PEREIRA C D C, et al. Short text classification using semantic random forest [J]. Springer International Publishing, 2014, 8646: 288-299. [13] 方澄, 李贝, 韩萍. 基于全局特征图的半监督微博文本情感分类[J]. 信号处理, 2021, 37(6): 1066-1074. FANG C, LI B, HAN P. Semi-supervised microblog text sentiment classification based on global feature graph [J]. Journal of Signal Processing, 2021, 37(6): 1066-1074. [14] 崔婉秋, 杜军平, 寇菲菲, 等. 面向微博短文本的社交与概念化语义扩展搜索方法[J]. 计算机研究与发展, 2018, 55(8): 1641-1652. CUI W Q, DU J P, KOU F F, et al. The social and conceptual semantic extended search method for microblog short text [J]. Journal of Computer Reasearch and Development, 2018, 55(8): 1641-1652. [15] WANG G, LI C, WANG W, et al. Joint embedding of words and labels for text classification[C]//Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans: NAACL-HLT, 2018: 461-469. [16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Conference and Workshop on Neural Information Processing Systems. Long Beach, California, U- SA: ACM, 2017: 6000-6010. [17] 张万杰. 引入标签语义信息的多标签文本分类[J]. 计算机应用, 2021, 8: 1672-9528. [18] JI F, YANG J L, ZHANG Q, et al. GraphFlow: a new graph convolutional network based on parallel flows [C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: ICASSP, 2020: 3332-3336. [19] 郑诚, 董春阳, 黄夏炎. 基于BTM图卷积网络的短文本分类方法[J]. 计算机工程与应用, 2021, 57(4): 155-160. ZHENG C, DONG C Y, HUANG X Y. Short text classification method based on BTM graph convolution network [J]. Computer Engineering and Application, 2021, 57(4): 155-160. [20] 辛媛. 基于图神经网络的单标签文本分类[D]. 合肥: 中国科技技术大学, 2021, 1-61. [21] 申艳光, 贾耀清. 基于词共现与图卷积的文本分类方法[J]. 计算机工程与应用, 2021, 57(11): 173-178. SHEN Y G, JIA Y Q. Text categorization method based on word co-occurrence and graph convolution [J]. Computer Engineering and Application, 2021, 57(11): 173-178. [22] 郑诚, 陈杰, 董春阳. 结合图卷积的深层神经网络用于文本分类[J]. 计算机工程与应用, 2022, 58(7): 206-212. ZHENG C, CHEN J, DONG C Y. Deep neural network combined with graph convolution for text classification [J]. Computer Engineering and Application, 2022, 58(7): 206-212. [23] LIU X, YOU X, ZHANG X, et al. Tensor graph convolutional networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, US-A: AAAI, 2020: 8409-8416. [24] WU F, ZHANG T, SOUZA A, et al. Simplifying graph convolutional networks[C]//International Conference on Machine Learning. Long Beach, CA, USA: ICML, 2019: 1-14. [25] ZHANG Y F, YU X L, CUI ZY, et al. Every document owns its structure: inductive text classification via graph neural networks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle, Washington, United States: ACL, 2020: 334-339. [26] LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL]. arXiv: 1511.05493(2017-09-22) [2022-08-20]. https://arxiv.org/abs/1511.05493. [27] ROMERO A, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. arXiv:1710.10903(2018-02-04) [2022-08-20]. https://arxiv.org/abs/1710.10903. [28] DING K Z, WANG J L, LI J D, et al. Be more with less: hypergraph attention networks for inductive text classification [C]//The 2020 Conference on Empirical Methods in Natural Language Processing. Online: EMNLP, 2020: 4927-4936. [29] LIN Y X, MENG Y X, SUN X F, et al. BertGCN: transductive text classification by combining GCN an BERT[C]//Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand: ACL-IJCNLP, 2021: 1456-1462. |
[1] | 林哲煌, 李东. 语义引导下自适应拓扑推理图卷积网络的人体动作识别[J]. 广东工业大学学报, 2023, 40(04): 45-52. |
|