广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 63-68,92.doi: 10.12052/gdutxb.220179
邝永年, 王丰
Kuang Yong-nian, Wang Feng
摘要: 为提高视频异常行为检测的准确率,本文提出了一种基于前景区域生成对抗网络的改进方法。通过提取实际视频帧的前景和背景掩码,确定生成对抗网络输出视频帧的待检测前景区域。针对待检测前景区域,应用前景区域峰值信噪比准则,计算异常行为检测得分,完成视频异常行为检测。实验结果表明,本文的检测方法在Avenue数据集、UCSD-Ped1数据集、UCSD-Ped2数据集上均能有效提高视频异常行为检测准确率,并能降低检测运行时间。
中图分类号:
[1] LAVEE G, RIVLIN E, RUDZSKY M. Understanding video events: a survey of methods for automatic interpretation of semantic occurrences in video [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) , 2009, 39(5): 489-504. [2] LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection—a new baseline[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2018: 6536-6545. [3] GRUBBS F E. Procedures for detecting outlying observations in samples [J]. Technometrics, 1969, 11(1): 1-21. [4] MAHADEVAN V, LI W X, BHALODIA V, et al. Anomaly detection in crowded scenes[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2010: 1975-1981. [5] KIM J, GRAUMAN K. Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2009: 2921-2928. [6] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2016: 733-742. [7] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE Press, 2019: 1705-1714. [8] LUO W, LIU W, GAO S. Remembering history with convolutional LSTM for anomaly detection[C]//2017 IEEE International Conference on Multimedia and Expo (ICME). New York: IEEE Press, 2017: 439-444. [9] NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE Press, 2019: 1273-1283. [10] 李自强, 王正勇, 陈洪刚, 等. 基于外观和动作特征双预测模型的视频异常行为检测[J]. 计算机应用, 2021, 41(10): 2997-3003. LI Z Q, WANG Z Y, CHEN H G, et al. Video abnormal behavior detection based on dual prediction model of appearance and motion features [J]. Journal of Computer Applications, 2021, 41(10): 2997-3003. [11] WU C, SHAO S, TUNC C, et al. An explainable and efficient deep learning framework for video anomaly detection [J]. Cluster Computing, 2022, 25(4): 2715-2737. [12] LIU C, FU R, LI Y, et al. A self-attention augmented graph convolutional clustering networks for skeleton-based video anomaly behavior detection [J]. Applied Sciences, 2021, 12(1): 4. [13] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2017: 1125-1134. [14] KAEWTRAKULPONG P, BOWDEN R. Video-based surveillance systems [M]. Boston, MA: Springer, 2002. 135-144. [15] LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C]//2013 IEEE International Conference on Computer Vision. New York: IEEE Press, 2013: 2720-2727. |
[1] | 杨镇雄, 谭台哲. 基于生成对抗网络的低光照图像增强算法[J]. 广东工业大学学报, 2024, 41(01): 55-62. |
[2] | 李红蕾; 凌捷; 徐少强; . 关于图象质量评价指标PSNR的注记[J]. 广东工业大学学报, 2004, 21(3): 74-78. |
|