广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 63-68,92.doi: 10.12052/gdutxb.220179

• 计算机科学与技术 • 上一篇    下一篇

基于前景区域生成对抗网络的视频异常行为检测研究

邝永年, 王丰   

  1. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2022-12-01 出版日期:2024-01-25 发布日期:2024-02-01
  • 通信作者: 王丰(1987–),男,副教授,博士,主要研究方向为通信信号处理、移动边缘计算与机器视觉,E-mail:fengwang13@gdut.edu.cn
  • 作者简介:邝永年(1995–),男,硕士研究生,主要研究方向为视频异常检测
  • 基金资助:
    国家自然科学基金资助项目(61901124);广东省自然科学基金资助项目(2021A1515012305);广州市基础研究计划项目(202102020856)

Video Frame Anomaly Behavior Detection Based on Foreground Area Generative Adversarial Networks

Kuang Yong-nian, Wang Feng   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-12-01 Online:2024-01-25 Published:2024-02-01

摘要: 为提高视频异常行为检测的准确率,本文提出了一种基于前景区域生成对抗网络的改进方法。通过提取实际视频帧的前景和背景掩码,确定生成对抗网络输出视频帧的待检测前景区域。针对待检测前景区域,应用前景区域峰值信噪比准则,计算异常行为检测得分,完成视频异常行为检测。实验结果表明,本文的检测方法在Avenue数据集、UCSD-Ped1数据集、UCSD-Ped2数据集上均能有效提高视频异常行为检测准确率,并能降低检测运行时间。

关键词: 视频异常行为检测, 峰值信噪比, 生成对抗网络, 前景区域

Abstract: In order to improve the accuracy of video anomaly behavior detection, a new detection method based on generative adversarial networks for video foreground areas is proposed. First, the foreground and background masks of the ground truth video frame are extracted, to determine the foreground areas of the output video frames from generative adversarial networks. For the foreground areas under consideration, the foreground area peak signal-to-noise ratio (F-PSNR) is used to calculate the detection score of anomaly behaviors. The experimental results show that the proposed method can effectively improve the detection accuracy of video anomaly behaviors with a reduced detection time for the Avenue dataset, UCSD-Ped1 dataset and UCSD-Ped2 dataset.

Key words: video anomaly behavior detection, peak signal-to-noise ratio, generative adversarial networks, foreground area

中图分类号: 

  • TP391
[1] LAVEE G, RIVLIN E, RUDZSKY M. Understanding video events: a survey of methods for automatic interpretation of semantic occurrences in video [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) , 2009, 39(5): 489-504.
[2] LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection—a new baseline[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2018: 6536-6545.
[3] GRUBBS F E. Procedures for detecting outlying observations in samples [J]. Technometrics, 1969, 11(1): 1-21.
[4] MAHADEVAN V, LI W X, BHALODIA V, et al. Anomaly detection in crowded scenes[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2010: 1975-1981.
[5] KIM J, GRAUMAN K. Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2009: 2921-2928.
[6] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2016: 733-742.
[7] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE Press, 2019: 1705-1714.
[8] LUO W, LIU W, GAO S. Remembering history with convolutional LSTM for anomaly detection[C]//2017 IEEE International Conference on Multimedia and Expo (ICME). New York: IEEE Press, 2017: 439-444.
[9] NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE Press, 2019: 1273-1283.
[10] 李自强, 王正勇, 陈洪刚, 等. 基于外观和动作特征双预测模型的视频异常行为检测[J]. 计算机应用, 2021, 41(10): 2997-3003.
LI Z Q, WANG Z Y, CHEN H G, et al. Video abnormal behavior detection based on dual prediction model of appearance and motion features [J]. Journal of Computer Applications, 2021, 41(10): 2997-3003.
[11] WU C, SHAO S, TUNC C, et al. An explainable and efficient deep learning framework for video anomaly detection [J]. Cluster Computing, 2022, 25(4): 2715-2737.
[12] LIU C, FU R, LI Y, et al. A self-attention augmented graph convolutional clustering networks for skeleton-based video anomaly behavior detection [J]. Applied Sciences, 2021, 12(1): 4.
[13] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2017: 1125-1134.
[14] KAEWTRAKULPONG P, BOWDEN R. Video-based surveillance systems [M]. Boston, MA: Springer, 2002. 135-144.
[15] LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C]//2013 IEEE International Conference on Computer Vision. New York: IEEE Press, 2013: 2720-2727.
[1] 杨镇雄, 谭台哲. 基于生成对抗网络的低光照图像增强算法[J]. 广东工业大学学报, 2024, 41(01): 55-62.
[2] 李红蕾; 凌捷; 徐少强; . 关于图象质量评价指标PSNR的注记[J]. 广东工业大学学报, 2004, 21(3): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!