广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 101-109.doi: 10.12052/gdutxb.220180

• 综合研究 • 上一篇    下一篇

基于单调排序与并行选择的连续删除堆栈译码器的硬件实现

曾文坦, 叶龙建, 翟雄飞, 韩国军   

  1. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2022-12-02 出版日期:2024-01-25 发布日期:2024-02-01
  • 通信作者: 翟雄飞(1990–) ,男,讲师,博士,主要研究方向为FPGA和信号处理技术,E-mail: zhaixiongfei@gdut.edu.cn
  • 作者简介:曾文坦(1997–) ,男,硕士研究生,主要研究方向为信道编译码FPGA设计实现
  • 基金资助:
    NSFC-广东省联合基金资助项目(U2001203) ;广东省重点领域研发计划项目(2021B1101270001) ;广州市基础与应用基础研究项目(202102020869) ;广东省自然科学基金资助面上项目(2022A1515010153)

The Implementation of Successive Cancellation Stack Decoder Based on Monotone Sorting and Parallel Comparison

Zeng Wen-tan, Ye Long-jian, Zhai Xiong-fei, Han Guo-jun   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-12-02 Online:2024-01-25 Published:2024-02-01

摘要: 极化码得益于其较低的复杂度和灵活的构造,成为了当今最为流行的信道编码方式。然而,与其他信道编码的译码算法相比,极化码中的连续删除 (Successive Cancellation, SC) 译码算法的性能较差。为了解决这一问题,连续删除列表(Successive Cancellation List, SCL) 、连续删除堆栈(Successive Cancellation Stack, SCS) 等基于连续删除译码的改进算法问世,并显著地改善了其纠错性能。其中,连续删除堆栈译码算法是以更高的复杂度为代价的,特别是在路径选择过程中。本文提出了一种新型的路径选择硬件架构,该架构通过对路径信息分组存储,用分组单调排序与并行比较相结合的策略进行最优路径选择,降低了硬件资源消耗的同时提高了路径选择的硬件效率。最后在现场可编程门阵列(Field Programmable Gate Array, FPGA) 上实现了该架构,硬件实现结果验证了本文提出的架构与现有的SCS译码器拥有相近的纠错性能的同时,整体资源开销在查找表(Look Up Table, LUT)、寄存器(Register)和块随机存储器(Block Random Access Memory, BRAM)上分别减少了24.06%,56.42%和39.29%,吞吐率提高了24.38%。

关键词: 信道编码, 极化码, 连续删除译码, 现场可编程门阵列

Abstract: Due to the low complexity and flexible construction, polar code has become one of the most popular channel codings in wireless communication. However, the conventional successive cancellation (SC) decoder suffers from the modest performance. To deal with this issue, some improved decoders, such as successive cancellation stack (SCS) and successive cancellation list (SCL) , are developed with significant improvement of bit error ratio. However, the performance improvement of these methods is at the cost of high complexity, especially in the procedure of path selection. In this work, we propose a new hardware architecture of path selection by combining the monotone sorting of groups with the parallel comparison, which enhances the performances of hardware efficiency and resource utilization. By exploiting our proposed architecture, the results of the implementation on field programmable gate array (FPGA) verify that the hardware consumptions of the look up table (LUT), register and block random access memory (BRAM) are reduced by 24.06% , 56.42% and 39.29% respectively. And the throughput is improved by 24.38% as compared with the existing architectures.

Key words: channel coding, polar code, successive cancellation decoding, field programmable gate array (FPGA)

中图分类号: 

  • TN929.5
[1] ARIKAN E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels [J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073.
[2] TAL I, VARDY A. List decoding of polar codes [J]. IEEE Transactions on Information Theory, 2015, 61(5): 2213-2226.
[3] NIU K, CHEN K. Stack decoding of polar codes [J]. Electronics Letters, 2012, 48(12): 695-697.
[4] NIU K, CHEN K. CRC-aided decoding of polar codes [J]. IEEE Communications Letters, 2012, 16(10): 1668-1671.
[5] ZHANG Q S, LIU A J, PAN X F, et al. CRC code design for list decoding of polar codes [J]. IEEE Communications Letters, 2017, 21(6): 1229-1232.
[6] XIANG L P, EGILMEZ Z, MAUNDER R, et al. CRC-aided logarithmic stack decoding of polar codes for ultra reliable low latency communication in 3GPP new radio [J]. IEEE Access, 2019, 7: 28559-28573.
[7] ARIKAN E. A performance comparison of polar codes and reed-muller codes [J]. IEEE Communications Letters, 2008, 12(6): 447-449.
[8] SHEN Y F, SONG W Q, REN Y Q, et al. Enhanced belief propagation decoder for 5G polar codes with bit-flipping [J]. IEEE Transactions on Circuits and Systems II. Express Briefs, 2020, 67(5): 901-905.
[9] YU Y R, PAN Z W, LIU N, et al. Belief propagation bit-flip decoder for polar codes [J]. IEEE Access, 2019, 7: 10937-10946.
[10] LEROUX C, TAL I, VARDY A, et al. Hardware architectures for successive cancellation decoding of polar codes[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic: IEEE, 2011: 1665-1668.
[11] LEROUX C, RAYMOND A, SARKIS G, et al. A semi-parallel successive-cancellation decoder for polar codes [J]. IEEE Transactions on Signal Processing, 2013, 61(2): 289-299.
[12] ZHANG C, PARHI K. Low-latency sequential and over-lapped architectures for successive cancellation polar decoder [J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2429-2441.
[13] ZHANG C, YUAN B, PARHI K. Reduced-latency SC polar decoder architectures[C]//IEEE International Conference on Communications. Ottawa, Canada: IEEE, 2012: 3471-3475.
[14] ZHANG C, PARHI K. Interleaved successive cancellation polar decoders[C]//IEEE International Symposium on Circuits and Systems. Melbourne, Australia: IEEE, 2014: 401-404.
[15] LIN J, XIONG C R, YAN Z Y. A high throughput list decoder architecture for polar codes [J]. Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(6): 2378-2391.
[16] TAO Y Y, CHO S G, ZHANG Z Y. A configurable successive-cancellation list polar decoder using split-tree architecture [J]. IEEE Journal of Solid-State Circuits, 2021, 56(2): 612-623.
[17] SONG W Q, ZHOU H Y, NIU K, et al. Efficient successive cancellation stack decoder for polar codes [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(11): 2608-2619.
[18] ERCAN F, TONNELLER T, GROSS W. Energy-efficient hardware architectures for fast polar decoders [J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(1): 322-335.
[19] 王美芹, 仰枫帆, 赵春丽. 基于FPGA的极化码半平行CA-SCL译码器设计[J]. 舰船电子工程, 2019, 39(3): 62-67.
WANG M Q, YANG F F, ZHAO C L. Implement of the CA-SCL semi-parallel decoding algorithm based on FPGA [J]. Ship Electronic Engineering, 2019, 39(3): 62-67.
[20] 衡园, 吴建成, 杨志军. 基于FPGA的控制算法定点化设计[J]. 广东工业大学学报, 2020, 37(3): 55-58.
HENG Y, WU J C, YANG Z J. A fixed-point design of control algorithm based on FPGA [J]. Journal of Guangdong University of Technology, 2020, 37(3): 55-58.
[1] 张广有, 苏国康, 李佳旺, 李俊飞, 唐有贵, 张永俊. 基于FPGA的电火花线切割自整定脉冲电源的研制[J]. 广东工业大学学报, 2023, 40(05): 108-112.
[2] 张业强, 刘怡俊. DMA控制器在导航基带SoC中的应用[J]. 广东工业大学学报, 2016, 33(01): 36-39.
[3] 林小平, 鲁青, 郭伟, 邓杰航, 王超. 一种SmartFusion FPGA的快速语音合成系统设计[J]. 广东工业大学学报, 2014, 31(2): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!