广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 93-100.doi: 10.12052/gdutxb.220152

• 综合研究 • 上一篇    下一篇

移动边缘计算系统的双服务器协同与计算通信资源联合优化

李宇龙, 梁静轩, 王丰   

  1. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2022-10-09 出版日期:2024-01-25 发布日期:2024-02-01
  • 通信作者: 王丰(1987–) ,男,副教授,主要研究方向为通信信号处理、移动边缘计算资源管理等,E-mail :fengwang13@gdut.edu.cn
  • 作者简介:李宇龙(1999–) ,男,硕士研究生,主要研究方向为移动边缘计算资源管理
  • 基金资助:
    国家自然科学基金资助项目(61901124) ;广东省自然科学基金资助项目(2021A1515012305) ;广州市科技计划项目(202102020856)

Optimized Design and Resource Allocation for Dual-server Mobile Edge Computing Systems

Li Yu-long, Liang Jing-xuan, Wang Feng   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-10-09 Online:2024-01-25 Published:2024-02-01

摘要: 为充分利用移动边缘计算(Mobile Edge Computing, MEC) 系统的计算资源,本文设计了双MEC服务器协同与计算通信资源联合优化方案。通过建模双服务器协同多用户任务计算优化问题,以系统计算时延和用户能耗的加权和最小化为准则,优化设计多用户计算卸载发射功率和计算任务分割。提出一种较低计算复杂度的联合设计方案,将原问题解耦为计算卸载优化和计算任务分割设计的2个子问题,分别通过内点法和单纯形法实现快速数值求解。仿真结果表明,本文所提算法的系统性能优于已有启发式基准算法方案,且在较少的算法运行时间下,联合优化算法方案能取得与最优拉格朗日乘子法基准方案相同的系统性能。

关键词: 移动边缘计算, 计算卸载, 双服务器协同, 资源优化

Abstract: In order to make full use of the computing resources of Mobile Edge Computing (MEC) system, this paper designs an optimization scheme of collaboration between two MEC servers and joint computing and communication resources. The scheme proposes the optimization problem of dual-server collaborative multi-user task calculation, where the weighted sum between system computing delay and user energy consumption is minized. The multi-user computing unloaded transmitting power and task segmentation are optimized in the proposed scheme. A joint design scheme with low computational complexity is proposed. The original problem is decoupled into two sub-problems of computational offload optimization and computational task segmentation design, both of which can be solved by interior point method and simplex method respectively. The simulation results show that the system performance of the proposed scheme is better than the existing heuristic benchmark algorithm scheme. And the joint optimization algorithm scheme can get the similar system performance as compared with the basic scheme of the optimal Lagrange multiplier method with less computation time.

Key words: mobile edge computing, computation offloading, dual-server collaboration, resource optimization

中图分类号: 

  • TN929.5
[1] MACH P, BECVAR Z. Mobile edge computing: a survey on architecture and computation offloading [J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656.
[2] MAO Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[3] 赵竑宇. 资源受限的移动边缘计算系统中计算卸载问题研究[D]. 北京: 北京邮电大学, 2019.
[4] WANG F, XU J, DING Z. Multi-antenna noma forcomputation offloading in multiuser mobile edge-computing systems [J]. IEEE Transactions on Communications, 2019, 67(3): 2450-2463.
[5] HUYNH L N T, PHARN Q V, PHAM O V, et al. Efficient computation offloading in multi-tier multi-access edge computing systems: a particle swarm optimization approach [J]. Applied Sciences, 2020, 10(1): 203.
[6] 景泽伟, 杨清海, 秦猛. 移动边缘计算中的时延和能耗均衡优化算法[J]. 北京邮电大学学报, 2020, 43(2) : 110-115.
JING Z W, YANG Q H, QIN M. A delay and energy tradeoff optimization algorithm for task offloading in mmobile edge computing network [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2) : 110-115.
[7] GONG Y. Optimal edge server and service placement in mobile edge computing [C]// 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference. Chongqing: IEEE, 2020: 688-691.
[8] GUO H, LIU J. Collaborative computation offloading for multiaccess edge computing over fiberwireless networks [J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4514-4526.
[9] 龙隆, 刘子辰, 石晶林, 等. 移动边缘计算中计算卸载与资源分配的联合优化策略[J]. 高技术通讯, 2020, 30(8): 765-773.
LONG L, LIU Z C, SHI J L, et al. Joint optimization strategy of service cache and resource allocateon in mobile edge network [J]. High Technology Tetters, 2020, 30(8): 765-773.
[10] KUANG Z, LI L, GAO J, et al. Partial offloading scheduling and power allocation for mobile edge computing systems [J]. IEEE Internet of Things Journal, 2019, 6(4): 6774-67-85.
[11] TANG L, HU H. Computation offloading and resource allocation for the internet of things in energy constrained mecenabled hetnets [J]. IEEE Access, 2020, 8: 47509-47521.
[12] ZHANG J, XIA W W , ZHANG Y Y, et al. Joint offloading and resource allocation optimization for mobile edge computing[C]// IEEE Global Communications Conference. Singapore: IEEE, 2017: 1-6.
[13] FENG H, GUO S, YANG L, et al. Collaborative data caching and computation offloading for multi-service mobile edge computing [J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9408-9422.
[14] ZHANG J, HU X P, NING Z L, et al. Energy latency tradeoff for energy-aware offloading in mobile edge computing networks [J]. IEEE Internet of Things Journal, 2018, 5(4): 2633-2645.
[15] PENG J, QIU H, CAI J, et al. D2D-assisted multi-user cooperative partial offloading transmission scheduling and computation allocateng for MEC [J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4858-4873.
[16] NING Z, DONG P, KONG X, et al. A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things [J]. IEEE Internet of Things Journal, 2019, 6(3): 4804-4814.
[17] BI J, YUAN H, ZHANG K, et al. Energy-minimized partial computation offloading for delay sensitive applications in heterogeneous edge networks [J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(4): 1941-1954.
[18] FANG F, XU Y, DING Z, et al. Optimal resource allocation for delay minimization in NOMA-MEC networks [J]. IEEE Transactions on Communications, 2020, 68(12): 7867-7881.
[19] XUE J, AN Y. Joint task offloading and resource allocation for multi-task multi-server NOMA-MEC networks [J]. IEEE Access, 2021, 9: 16152-16163.
[20] XU J, ZHU P, LI J, et al. Secure computation offloading for multi-user multi-server MEC-enabled IoT[C]// IEEE International Conference on Communications. Montreal: IEEE, 2021: 1-6.
[21] SHANG C, SUN Y, LUO H. A hybrid deep reinforcement learning approach for dynamic task offloading in NOMA-MEC system [C]//IEEE International Conference on Sensing, Communication, and Networking (SECON) . Stockholm: IEEE, 2022: 434-442.
[22] 代美玲, 刘周斌, 郭少勇, 等。基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制[J]. 电子与信息学报, 2019, 41(11) : 2684-2690.
DAI M L, LIU Z B, GUO S Y, et al. A computation offloading and resource allocation mechanism based on minimizing devices energy consumption and system delay [J]. Journal of Electronics & Information Technology , 2019, 41(11) : 2684-2690.
[23] FAN W H, HAN J T, YAO L, et al. Latency-energy optimization for joint wifi and cellular offloading in mobile edge computing networks [J]. Comput Networks, 2020, 181: 107570.
[24] CAO X W, WANG F, XU J, et al. Joint computation and communication cooperation for energy-efficient mobile edge computing [J]. IEEE Internet of Things Journal, 2019, 6(3): 4188-4200.
[25] LUO Z Q, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems [J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34.
[26] 王丰, 李宇龙, 林志飞, 等。基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(4) : 17-23.
WANG F, LI Y L, LIN Z F, et al. Online resource allocation design for computation capacity maximization in energy harvesting mobile edge computing systems [J]. Journal of Guangdong University of Technology, 2022, 39(4) : 17-23.
[27] 李顺, 葛海波, 刘林欢, 等. 移动边缘计算中的协同计算卸载策略[J]. 计算机工程与应用, 2022, 58(21) : 83-90.
LI S, GE H B, LIU L H, et al. Collaborative computing offloading sstrategy in mobile edge computing [J]. Computer Engineering and Applications, 2022, 58(21) : 83-90.
[1] 梁静轩, 王丰. 多用户多时隙移动边缘计算系统的计算缓存优化设计[J]. 广东工业大学学报, 2023, 40(05): 73-80.
[2] 朱清华, 鹿安邦, 周俭铁, 侯艳. 改进多种群进化算法求解移动边缘计算中任务调度问题[J]. 广东工业大学学报, 2022, 39(04): 9-16.
[3] 王丰, 李宇龙, 林志飞, 崔苗, 张广驰. 基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(04): 17-23.
[4] 刘冬宁, 刘统武, 宋静静, 侯艳. 面向基站代维人员分工协作优化的多重指派研究[J]. 广东工业大学学报, 2018, 35(06): 69-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!