广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 86-92.doi: 10.12052/gdutxb.230005
温雯, 江建强, 蔡瑞初, 郝志峰
Wen Wen, Jiang Jian-qiang, Cai Rui-chu, Hao Zhi-feng
摘要: 交通流量预测是智能交通控制和管理系统的一个重要环节,但交通流量数据具有时间和空间上的非线性和复杂性等特征,为对其进行精准预测,本文提出了Graph Temopral Recurrent Independent Mechanisms (G-tRIM)模型。该模型使用图注意力网络(Graph Attention Networks, GAT)来有效捕获交通流量数据的空间依赖关系,使用循环独立机制(Recurrent Independent Mechanisms, RIM)来精准刻画交通流量数据的潜在状态。最后在北京和贵州数据集上,以均方误差(Mean Square Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)为指标进行实验,结果表明,G-tRIM在各个数据集上的表现均优于基准模型。
中图分类号:
[1] YAO H, TANG X, WEI H, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii State: AAAI, 2019. 33(1) : 5668-5675. [2] ZHANG J B, ZHENG Y, SUN J K, et al. Flow prediction in spatio-temporal networks based on multitask deep learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(3): 468-478. [3] HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials [J]. Journal of Transportation Engineering, 1995, 121(3): 249-254. [4] 姚智胜, 邵春福, 高永亮. 基于支持向量回归机的交通状态短时预测方法研究[J]. 北京交通大学学报, 2006, 30(3): 19-22. YAO Z S, SHAO C F, GAO Y L. Research on methods of short-term traffic forecasting based on support vector regression [J]. Journal of Beijing Jiaotong University, 2006, 30(3): 19-22. [5] 张晓利, 贺国光, 陆化普. 基于K-邻域非参数回归短时交通流预测方法[J]. 系统工程学报, 2009, 24(2): 178-183. ZHANG X L, HE G G, LU H P. Short-term traffic flow forecasting based on K-nearest neighbors non-parametric regression [J]. Journal of Systems Engineering, 2009, 24(2): 178-183. [6] ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI. 2017, 31(1) . [7] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24. [8] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3): 759-769. FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting [J]. Journal of Software, 2019, 30(3): 759-769. [9] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//International Conference on Learning Representations. Toulon: ICLR, 2017. [10] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. [11] CHO K, VAN MERRIËNBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder–decoder approaches[EB/OL]. arXiv: 1409.1259(2014-10-07)[2023-01-01]. https://arxiv.org/abs/1409.1259. [12] JORDAN M I. SERIAL ORDER: A parallel distributed processing approach[M]//Advances in Psychology. Amsterdam: North-Holland, 1997, 121: 471-495. [13] GOYAL A, LAMB A, HOFFMANN J, et al. Recurrent independent mechanisms[C]//International Conference on Learning Representations. Online: ICLR, 2021. [14] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2018: 3634-3640. [15] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [J]. International Conference on Learning Representations, 2018, 1050: 4. [16] ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858. [17] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii State: AAAI, 2019, 33(1) : 922-929. |
[1] | 汪超1,孙卫华1,何元烈2. 灰色预测模型在高速公路车流预测中的应用[J]. 广东工业大学学报, 2012, 29(1): 32-34. |
|