广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (02): 122-128.doi: 10.12052/gdutxb.230125
• 综合研究 • 上一篇
钟建交1, 罗荣昌2
Zhong Jian-jiao1, Luo Rong-chang2
摘要: CO2与环氧化物通过环加成反应制备环状碳酸酯是CO2资源化利用的有效途径之一,但工业上使用的传统催化剂往往存在着苛刻的反应条件和催化剂难以循环使用等缺点。开发能够使环加成反应在温和条件下发生的多相催化剂仍面临巨大挑战。通过Friedel-Crafts烷基化反应获得的超交联聚合物(Hypercrosslinked Polymer, HCPs)是一种具有永久孔隙率的三维网络,在CO2催化转化方面具有极大的应用潜力。本文设计与合成了一种冠醚基超交联聚合物(CE-HCP-1)并将其成功地用于CO2环加成反应中,分别使用两种工业催化剂(碘化钾KI或四丁基溴化铵TBAB)作为助催化剂时,均实现了在相对较温和无溶剂的条件下高效地合成系列环状碳酸酯。在KI/CE-HCP-1双组分催化系统中,在100 ℃和1.0 MPa的CO2压力下,反应16 h,环氧氯丙烷的转化率可达90%以上,并且展现出良好的循环稳定性和底物适用性。因此,构建高效的双组分协同催化体系能为温和条件下CO2的资源化利用提供良好的路径。
中图分类号:
[1] SCOTT A. Learning to love CO2 [J]. Chemical & Engineering News, 2015, 93: 10-16. [2] JONES W D. Carbon capture and conversion [J]. Journal of the American Chemical Society, 2020, 142: 4955-4957. [3] 高志文, 肖林飞, 陈静, 等. 二氧化碳与环氧化合物合成环状碳酸酯的研究进展[J]. 催化学报, 2008, 29: 831-838. GAO Z W, XIAO L F, CHEN J, et al. Research progress in the synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. Chinese Journal of Catalysis, 2008, 29: 831-838. [4] LUO R C, LIU X Y, CHEN M, et al. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates [J]. ChemSusChem, 2020, 13: 3945-3966. [5] LUO R C, CHEN M, ZHOU F, et al. Synthesis of metalloporphyrin-based porous organic polymers and their functionalization for conversion of CO2 into cyclic carbonates: recent advances, opportunities and challenges [J]. Journal of Materials Chemistry A, 2021, 9: 25731-25749. [6] LIANG J, HUANG Y B, CAO R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates [J]. Coordination Chemistry Reviews, 2019, 378: 32-65. [7] PAL T K, DE D, BHARADWAJ P K. Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates [J]. Coordination Chemistry Reviews, 2020, 408: 213173-213215. [8] TAN L X, TAN B E. Hypercrosslinked porous polymer materials: design, synthesis, and applications [J]. Chemical Society Reviews, 2017, 46: 3322-3356. [9] FONTANALS N, MARCé R M, BORRULL F, et al. Hypercrosslinked materials: preparation, characterisation and applications [J]. Polymer Chemistry, 2015, 6: 7231-7244. [10] GU Y L, SON S U, LI T, et al. Low-cost hypercrosslinked polymers by direct knitting strategy for catalytic applications [J]. Advanced Functional Materials, 2021, 31: 2008265. [11] KIHARA N, HARA N, ENDO T. Catalytic activity of various salts in the reaction of 2, 3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure [J]. The Journal of Organic Chemistry, 1993, 58: 6198-6202. [12] DESENS W, KOHRT C, FRANK M, et al. Highly efficient polymer-supported catalytic system for the valorization of carbon dioxide [J]. ChemSusChem, 2015, 8: 3815-3822. [13] XU Q, AN S H, NI Z H, et al. Construction of covalent organic frameworks with crown ether struts [J]. Angewandte Chemie International Edition, 2021, 60: 9959-9963. [14] SHEN J C, JIANG W L, GUO W D, et al. A rings-in-pores net: crown ether-based covalent organic frameworks for phase-transfer catalysis [J]. Chemical Communications, 2020, 56: 595-598. [15] KONG H Y, WANG T X, TAO Y, et al. Crown ether-based hypercrosslinked porous polymers for gold adsorption [J]. Separation and Purification Technology, 2022, 290: 120805. [16] HAO Y J, YAN X L, CHANG T, et al. Hydroxyl-anchored covalent organic crown-based polymers for CO2 fixation into cyclic carbonates under mild conditions [J]. Sustainable Energy & Fuels, 2022, 6: 121-127. [17] GU X, WANG B, PANG Y, et al. Crown ether-based covalent organic frameworks for CO2 fixation [J]. New Journal of Chemistry, 2023, 47: 2040-2044. [18] LIU X Y, YANG Y Y, CHEN M, et al. High-surface-area metalloporphyrin-based porous ionic polymers by the direct condensation strategy for enhanced CO2 capture and catalytic conversion into cyclic carbonates [J]. ACS Applied Materials & Interfaces, 2023, 15: 1085-1096. [19] LIU X Y, CHEN M, XU W, et al. Potassium-ion-bound porous organic polymers having crown ether struts enable cooperative conversion of CO2 to cyclic carbonates under mild conditions[EB/OL]. Journal of Polymer Science, 2022. https://doi.org/10.1002/pol.20220638. [20] CHEN Y J, LUO R C, XU Q H, et al. State-of-the-art aluminum porphyrin-based heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates at ambient conditions [J]. ChemCatChem, 2017, 9: 767-773. [21] LI Q S, YANG H, LI M Q, et al. Highly efficient solvent-free conversion of CO2 into cyclic carbonates by acrylamide-KI [J]. Industrial & Engineering Chemistry Research, 2020, 59: 8136-8144. [22] CHEN W, ZHONG L X, PENG X W, et al. Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse-an agricultural waste [J]. ACS Sustainable Chemistry & Engineering, 2015, 3: 147-152. [23] KANEKO S, SHIRAKAWA S. Potassium iodide-tetraethylene glycol complex as a practical catalyst for CO2 fixation reactions with epoxides under mild conditions [J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 2836-2840. [24] HAO Y J, YAN X L, LIU X H, et al. Urea-based covalent organic crown polymers and KI electrostatic synergy in CO2 fixation reaction: a combined experimental and theoretical study [J]. Journal of CO2 Utilization, 2022, 56: 101867. [25] SHAIKH R R, PORNPRAPROM S, D'ELIA V. Catalytic strategies for the cycloaddition of pure, diluted and waste CO2 to epoxides under ambient conditions [J]. ACS Catalysis, 2017, 8: 419-450. [26] LUO R C, CHEN M, LIU X Y, et al. Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites [J]. Journal of Materials Chemistry A, 2020, 8: 18408-18424. |
[1] | 梁曰巍, 刘丽孺, 綦戎辉, 黄宇, 李志生. 膜式溶液除湿空调与二氧化碳跨临界循环热泵一体化系统性能研究[J]. 广东工业大学学报, 2018, 35(01): 61-66. |
[2] | 程甜, 刘丽孺, 王璋元, 王晓霞, 丁泽智. 应用于温湿度独立控制空调系统中的CO2跨临界循环热泵系统的模拟研究[J]. 广东工业大学学报, 2017, 34(01): 40-44. |
[3] | 于凤玲. 基于变异系数和灰色层次分析法的CO2排放量影响因素分析[J]. 广东工业大学学报, 2016, 33(04): 89-94. |
|