广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (02): 1-10.doi: 10.12052/gdutxb.230090

• 特约综述 •    下一篇

吸附/吸收式空气取水技术研究进展

李清慧1, 潘晓春1, 佐晓波1, 王黛瑶2,3, 赵志伟2,4, 梁嘉良2   

  1. 1. 32181部队, 陕西 西安 710032;
    2. 重庆大学 环境与生态学院, 重庆 400000;
    3. 中国城市规划设计研究院深圳分院, 广东 深圳 518000;
    4. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2023-06-07 出版日期:2024-03-25 发布日期:2024-04-23
  • 通信作者: 梁嘉良(1990-),男,博士,副教授,主要研究方向为水污染控制,E-mail:liangjialiang@cqu.edu.cn
  • 作者简介:李清慧(1992-),女,硕士,助理工程师,主要研究方向为非常规水资源开发与利用,E-mail:470796943@qq.com
  • 基金资助:
    国家自然科学基金面上基金资助项目(52170025)

Research Progress in Adsorption/absorption-based Atmospheric Water Harvesting

Li Qing-hui1, Pan Xiao-chun1, Zuo Xiao-bo1, Wang Dai-yao2,3, Zhao Zhi-wei2,4, Liang Jia-liang2   

  1. 1. 32181 Troops, Xi’an 710032, China;
    2. College of Environment and Ecology, Chongqing University, Chongqing 400000, China;
    3. Shenzhen Branch, China Academy of Urban Planning & Design, Shenzhen 518000, China;
    4. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-06-07 Online:2024-03-25 Published:2024-04-23

摘要: 吸附/吸收式空气取水技术操作简易、取水能耗低,是缓解淡水资源短缺的有效措施。本文对吸附/吸收式空气取水技术近年来的研究进展进行了系统综述,介绍了吸附/吸收式空气取水技术的基本原理和主要材料类别,总结了吸附/吸收设备的材料放置结构、设备运行方式和应用场景。吸附/吸收材料包括传统的多孔结构材料、吸湿盐和新型有机空气取水材料。目前,各类研究已在提高材料的吸附性能、拓宽材料应用范围以及减少吸水-释水所需能耗方面取得重大进展。然而,吸附/吸收材料仍存在机械性能较差和无法型材化等问题,亟待后续更加深入的研究。吸附/吸收设备中的材料可通过平铺放置、中心轴放置、褶皱放置等多种结构形式进行空气取水应用,设备可采用一天一循环或一天多循环的模式运行。除了直接收集液态水以外,吸附/吸收式空气取水设备还可用于培育生态农场,为缓解地区淡水资源匮乏和食物短缺等问题提供了思路。

关键词: 高分子聚合物, 空气取水, 吸附, 吸收, 太阳能

Abstract: The technology of adsorption/absorption atmospheric water harvesting is characterized by ease of operation, low energy consumption, and represents an effective measure to mitigate the scarcity of fresh water resources. A systematic review of recent research progress in this field is presented and an introduction is provided to the basic principles and main material categories of adsorption/absorption air water extraction technology, as well as a summary of the material placement structure, equipment operation mode, and application field of adsorption/absorption equipment. Adsorption/absorption materials include traditional porous structural materials, hygroscopic salts, and new organic air water intake materials. Currently, significant advancements have been made in enhancing the adsorption performance of materials, broadening their application scope, and reducing the energy consumption required for water absorption and release. Nevertheless, there are still challenges related to poor mechanical properties and incapability to be shaped into profiles for adsorption/absorption materials that necessitate further comprehensive investigation. The adsorption/absorption equipment can be utilized for air-water intake applications through various structural configurations, including flat placement, central axis placement, fold placement, etc. This equipment is capable of operating in either a daily cycle or multiple cycle mode. Apart from directly collecting liquid water, the adsorption/absorption atmospheric water harvesting equipment can also serve as an innovative solution for cultivating ecological farms, thereby offering potential strategies to mitigate regional freshwater resource scarcity and food shortages.

Key words: polymer, atmospheric water harvesting, adsorption, absorption, solar energy

中图分类号: 

  • TU991.1
[1] AYYAGARI V, HWANG Y, KIM J. Design and development of potassium formate based atmospheric water harvester [J]. Energy, 2021, 221: 119726.
[2] YUAN Y, ZHANG H, YANG F, et al. Inorganic composite sorbents for water vapor sorption: a research progress [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 761-776.
[3] MENACHEM, ELIMELECH, WILLIAM, et al. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011.
[4] HANIKEL N, PREVOT M S, YAGHI O M. MOF water harvesters [J]. Nature Nanotechnology, 2020, 15(5): 348-355.
[5] KLEMM O, SCHEMENAUER R S, LUMMERICH A, et al. Fog as a fresh-water resource: overview and perspectives [J]. Ambio, 2012, 41(3): 221-234.
[6] AGAM N, BERLINER P R. Dew formation and water vapor adsorption in semi-arid environments-a review [J]. Journal of Arid Environments, 2006, 65(4): 572-590.
[7] FURUKAWA H, GANDARA F, ZHANG Y B, et al. Water adsorption in porous metal-organic frameworks and related materials. [J]. Journal of the American Chemical Society, 2014, 136(11): 4369.
[8] 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020(1): 33-46.
WANG W W, GE T S, DAI Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting [J]. Solar Energy, 2020(1): 33-46.
[9] LORD J, THOMAS A, TREAT N, et al. Global potential for harvesting drinking water from air using solar energy [J]. Nature, 2021, 598(7882): 611-617.
[10] 王胜楠, 陈康, 郑旭. 吸附式空气取水系统用吸湿材料研究进展[J]. 化工进展, 2022, 41(7): 3636-3647.
WANG S N, CHEN K, ZHENG X. Recent progress of moisture sorbent for adsorption-based atmospheric water harvesting [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3636-3647.
[11] 郑旭. 小温差再生的干燥剂的优选及其在除湿换热器中的应用[D]. 上海: 上海交通大学, 2016.
[12] LAPOTIN A, KIM H, RAO S R, et al. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance [J]. Accounts of Chemical Research, 2019(52): 1588-1597.
[13] CAO Y, CHEN Y, SUN X, et al. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity [J]. Physical Chemistry Chemical Physics, 2012, 14(35): 12252-12262.
[14] BUTT H, GRAF K, KAPPL M. Physics and chemistry of interfaces[M]. 2nd. New York: John Wiley & Sons, Inc. , 2006.
[15] LI R, SHI Y, ALSAEDI M, et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator [J]. Environmental Science & Technology, 2018, 52(19): 11367-11377.
[16] LI R, SHI Y, WU M, et al. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent [J]. Nano Energy, 2020, 67: 104255.
[17] LI R, SHI Y, SHI L, et al. Harvesting water from air: using anhydrous salt with sunlight [J]. Environmental Science & Technology, 2018, 52(9): 5398-5406.
[18] XU J, LI T, CHAO J, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt [J]. Angewandte Chemie International Edition, 2020, 59(13): 5202-5210.
[19] ZHOU X, LU H, ZHAO F, et al. Atmospheric water harvesting: a review of material and structural designs [J]. ACS Materials Letters, 2020, 2(7): 671-684.
[20] SAHA B B, KOYAMA S, LEE J B, et al. Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller [J]. International Journal of Multiphase Flow, 2003, 29(8): 1249-1263.
[21] OLIVIER J P. Modeling physical adsorption on porous and non porous solids using density functional theory [J]. Journal of Porous Materials, 1995, 2(1): 9-17.
[22] KUZNETSOVA A, YATES J T, LIU J, et al. Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase[J]. The Journal of Chemical Physics, 2000, 112(21): 9590-9598.
[23] SRIVASTAVA N C, EAMES I W. A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems [J]. Applied Thermal Engnineering, 1998, 18(9-10): 707-714.
[24] KATO Y, YAMADA M, KANIE T, et al. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors [J]. Nuclear Engineering & Design, 2001, 210(1-3): 1-8.
[25] CANIVET J, FATEEVA A, GUO Y, et al. Water adsorption in MOFs: fundamentals and applications [J]. Chemical Society Reviews, 2014, 43(16): 5594-5617.
[26] 常烜宇, 李勇, 何海斌等. 硅胶及硅胶-氯化锂复合材料蓄能特性实验与分析[J]. 太阳能学报, 2017, 38(7): 1767-1772.
CHANG X Y, LI Y, HE H B, et al. Investagation of the experiment on the energy storage characteristics of silica gel and silica gel-lithium chloride composite material [J]. Acta Energeia Solaris Sinica, 2017, 38(7): 1767-1772.
[27] ARISTOV Y I. Selective water sorbents: a new family of materials for sorption cooling/heating: state-of-the art[C]//In Proceedings of V Minsk International Seminar on Heat Pipes, Heat Pumps, and Refrigerators, [s.l.: s.n.], 2003: 379-390.
[28] FANG Y, ZHANG Z, DAYAN L I, et al. Adsorptive performance of metallic ion doped silica gel adsorbent [J]. Materials Review, 2009, 23(18): 11-14.
[29] KANEKO K. Specific intermolecular structures of gases confined in carbon nanospace [J]. Carbon, 2000, 38(2): 287-303.
[30] SPIRIDON M, HAUTA O R, Secula M S, et al. Preparation and characterization of some porous composite materials for water vapor adsorption [J]. Revista de Chimie, 2012, 63(7): 711-714.
[31] ENTEZARI A, EJEIAN M, WANG R Z. Extraordinary air water harvesting performance with three phase sorption [J]. Materials Today Energy, 2019, 13: 362-373.
[32] WILLIAM G E, MOHAMED M H, FATOUH M. Desiccant system for water production from humid air using solar energy [J]. Energy, 2015, 90: 1707-1720.
[33] WANG X, LI X, LIU G, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator [J]. Angewandte Chemie International Edition, 2019, 58(35): 12054-12058.
[34] KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs [J]. Science Advances, 2018, 4(10): t9180.
[35] FURUKAWA H, Cordova E K, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444.
[36] KALMUTZKI M J, DIERCKS C S, YAGHI O M. Metal-organic frameworks for water harvesting from air [J]. Advanced Materials, 2018, 30(37): 1704304.
[37] KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight [J]. Science, 2017(356): 430-434.
[38] HANIKEL N, PREVOT M S, FATHIEH F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester [J]. ACS Central Science, 2019, 5(10): 1699-1706.
[39] GORDEEVA L G, SOLOVYEVA M V, SAPIENZA A, et al. Potable water extraction from the atmosphere: potential of MOFs [J]. Renewable Energy, 2020, 148: 72-80.
[40] ZHOU X, GUO Y, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification [J]. Accounts of Chemical Research, 2019, 52(11): 3244-3253.
[41] ULLAH F, OTHMAN M B H, JAVED F, et al. Classification, processing and application of hydrogels: a review [J]. Materials Science and Engineering:C, 2015, 57: 414-433.
[42] AHMED E M. Hydrogel: Preparation, characterization, and applications: a review [J]. Journal of Advanced Research, 2015, 6(2): 105-121.
[43] KABIRI K, OMIDIAN H, ZOHURIAAN-MEHR M J, et al. Superabsorbent hydrogel composites and nanocomposites: a review [J]. Polymer Composites, 2011, 32(2): 277-289.
[44] YANG K, PAN T, LEI Q, et al. A roadmap to sorption-based amospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization [J]. Environmental Science & Technology, 2021, 55(10): 6542-6560.
[45] GUO Y, BAE J, FANG Z, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability [J]. Chemical Reviews, 2020, 120(15): 7642-7707.
[46] NANDAKUMAR D K, RAVI S K, ZHANG Y, et al. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting[J]. Energy & Environmental Science, 2018.
[47] YANG J, ZHANG X, QU H, et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture [J]. Advanced Materials, 2020, 32(39): 2002936.
[48] ZHANG X, YANG J, QU H, et al. Machine-learning-assisted autonomous humidity management system based on solar‐regenerated super hygroscopic complex[J]. Advanced Science, 2020: 2003939.
[49] KALLENBERGER P A, FROBA M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix[J]. Communications Chemistry, 2018, 1(1) .
[50] LI R, WU M, SHI Y, et al. Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted bulk water sources [J]. Journal of Materials Chemistry A, 2021, 9(26): 14731-14740.
[51] ENTEZARI A, EJEIAN M, WANG R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts [J]. ACS Materials Letters, 2020, 2(5): 471-477.
[52] NI F, XIAO P, QIU N, et al. Collective behaviors mediated multifunctional black sand aggregate towards environmentally adaptive solar-to-thermal purified water harvesting [J]. Nano Energy, 2020, 68: 104311.
[53] KARMAKAR A, MILEO P G M, BOK I, et al. Thermo-responsive MOF/Polymer composites for temperature-mediated water capture and release [J]. Angewandte Chemie International Edition, 2020, 59(27): 11003-11009.
[54] YILMAZ G, MENG F L, LU W, et al. Autonomous atmospheric water seeping MOF matrix [J]. Science Advances, 2020, 6(42): eabc8605.
[55] YANG H, ZHU H, HENDRIX M M R M, et al. Temperature-triggered collection and release of water from fogs by a sponge-like cotton fabric [J]. Advanced Materials, 2013, 25(8): 1150-1154.
[56] MATSUMOTO K, SAKIKAWA N, MIYATA T. Thermo-responsive gels that absorb moisture and ooze water [J]. Nature Communications, 2018, 9(1): 2315.
[57] HE W, ZHOU L, WANG M, et al. Structure development of carbon-based solar-driven water evaporation systems [J]. Science Bulletin, 2021, 66(14): 1472-1483.
[58] WANG M, SUN T, WAN D, et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting [J]. Nano Energy, 2021, 80: 105569.
[59] ZHANG X, YANG J, BORAYEK R, et al. Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting [J]. Nano Energy, 2020, 75: 104873.
[60] NI F, QIU N, XIAO P, et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting [J]. Angewandte Chemie International Edition, 2020, 59(43): 19237-19246.
[61] WU M, LI R, SHI Y, et al. Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting [J]. Materials horizons, 2021, 8(5): 1518-1527.
[62] ZHAO F, ZHOU X, LIU Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting [J]. Advanced Materials, 2019, 31(10): 1806446.
[63] YANG K, PAN T, PINNAU I, et al. Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics [J]. Nano Energy, 2020, 78: 105326.
[64] YAO H, ZHANG P, HUANG Y, et al. Highly efficient clean water production from contaminated air with a wide humidity range [J]. Advanced Materials, 2019, 32(6): 1905875.
[65] XU J, LI T, YAN T, et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent [J]. Energy & Environmental Science, 2021, 14: 5979-5994.
[66] DENG F, WANG C, XIANG C, et al. Bioinspired topological design of super hygroscopic complex for cost-effective atmospheric water harvesting [J]. Nano Energy, 2021, 90: 106642.
[67] TALAAT M A, AWAD M M, ZEIDAN E B, et al. Solar-powered portable apparatus for extracting water from air using desiccant solution [J]. Renewable Energy, 2018, 119: 662-674.
[68] WANG J Y, WANG R Z, WANG L W, et al. A high efficient semi-open system for fresh water production from atmosphere [J]. Energy, 2017, 138: 542-551.
[69] FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical water production from desert air [J]. Science Advances, 2018, 4(6): eaat3198.
[70] ZHAO Z, WANG D, GAN P, et al. Solar-driven atmospheric water harvesting with a super-hygroscopic composite modified activated carbon fiber for tropical island ecological farm [J]. Environmental Functional Materials, 2022, 1(3): 275-283.
[1] 杨文剑, 赖杨钰, 杨奎, 祖道远, 张远, 马金星. 靶向吸附-转化水中新污染物的研究进展[J]. 广东工业大学学报, 2023, 40(06): 131-138.
[2] 蓝芳芳, 李贤辉, 杨阳. 海水提铀技术研究进展与挑战[J]. 广东工业大学学报, 2023, 40(06): 139-146.
[3] 黄金花, 鲁圣国. 多孔黄豆对中性红染料及重金属的去除性能研究[J]. 广东工业大学学报, 2022, 39(06): 107-113.
[4] 熊旋, 荣丰梅, 文元美. 一种基于超表面的超宽带THz吸波体[J]. 广东工业大学学报, 2019, 36(05): 20-24.
[5] 卢梓健, 黄金, 胡艳鑫, 王海, 陈友鹏. 滑移式线性菲涅尔太阳能集热器的设计及实验研究[J]. 广东工业大学学报, 2019, 36(05): 86-93.
[6] 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74.
[7] 张美杰, 张平. 微薄硅晶片高速视觉定位及矫正系统[J]. 广东工业大学学报, 2018, 35(01): 9-15.
[8] 刘冲冲, 陈观生, 向欢欢. 真空集热管内溴化锂溶液吸热及汽化特性实验研究[J]. 广东工业大学学报, 2016, 33(04): 79-83.
[9] 谢泽扬,黄金,李定昌,王海. 聚光太阳电池联合温差发电系统实验研究[J]. 广东工业大学学报, 2016, 33(02): 66-70.
[10] 李久锋, 陈观生, 张国庆. 塑料太阳能平板集热器试验研究[J]. 广东工业大学学报, 2015, 32(3): 137-140.
[11] 王永真, 罗向龙, 陈颖, 胡嘉灏, 龚宇烈. 地热水双级吸收式制冷系统的火用经济分析[J]. 广东工业大学学报, 2015, 32(1): 42-49.
[12] 钟选斌, 郭建维, 傅宝林, 彭进平, 杨宇程. 活性炭纤维对凝结水中Fe3+的吸附研究[J]. 广东工业大学学报, 2014, 31(4): 127-131.
[13] 翁婷婷, 郭建维, 黎新明, 崔英德, 尹国强, 张步宁. 可聚合离子液体AMPS-TEA的合成及其交联共聚物对有机溶剂的吸收行为[J]. 广东工业大学学报, 2013, 30(4): 33-38.
[14] 王璋元, 杨晚生, 张向美, 陈泽成, 陈志武. 居住建筑光热系统一体化技术问题研究[J]. 广东工业大学学报, 2013, 30(4): 121-124.
[15] 刘敬勇, 黄桂虹, 邓俊强, 刘凯, 谢永彬. 甘蔗渣对亚甲基蓝的吸附性能实验研究[J]. 广东工业大学学报, 2013, 30(2): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!