广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (05): 88-96.doi: 10.12052/gdutxb.230135
周福平, 肖曙红, 张岩
Zhou Fu-ping, Xiao Shu-hong, Zhang Yan
摘要: 在轴承–转子系统中,转子不对中现象时有发生,其对轴承性能具有较大影响,目前关于气体箔片轴承的研究大部分都是二维模型,无法考虑轴承的轴向变形差异,从而无法分析转子不对中现象。本文使用壳理论对气体箔片轴承进行三维建模,平箔片和波箔片采用壳单元模拟,并考虑膜效应、弯曲效应和剪切效应。箔片与平箔之间的摩擦接触则采用点线接触,并通过罚函数法计算接触力。库仑摩擦模型具有高度非线性,为了避免数值求解困难,需要对其进行规则化处理,采用增量迭代法进行求解。结果表明,该模型能够有效地对箔片轴承的性能进行模拟。当转子不对中时,箔片轴承中的气膜厚度在轴向上分布不均匀,最小气膜厚度随倾斜角的增大而减小,倾斜角几乎不影响转子偏心率,平箔片一端的变形量要远远大于另一端,这会使箔片轴承的承载能力下降,甚至造成破坏。
中图分类号:
[1] WALTON J F, HOOSHANG H, TOMASZEWSKI M J. Testing of a small turbocharger/turbojet sized simulator rotor supported on foil bearings [J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(3): 320-326. [2] KIM K S, LEE I. Vibration characteristics of a 75 kW turbo machine with air foil bearings [J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(3): 843-849. [3] DELLACORTE C, VALCO M J. Load capacity estimation of foil air journal bearings for oil-free turbomachinery applications [J]. Tribology Transactions, 2000, 43(4): 795-801. [4] HESHMAT H, WALOWIT J, PINKUS O. Analysis of gas-lubricated foil journal bearings [J]. Journal of Lubrication Technology, 1983, 105(4): 647-655. [5] HESHMAT H, WALOWIT J A, PINKUS O. Analysis of gas-lubricated compliant thrust bearings [J]. Journal of Lubrication Technology, 1983, 105(4): 638-646. [6] PENG J P, CARPINO M. Calculation of stiffness and damping coefficients for elastically supported gas foil bearings [J]. Journal of Tribology, 1993, 115(1): 20-27. [7] PENG Z C, KHONSARI M M. Hydrodynamic analysis of compliant foil bearings with compressible air flow [J]. Journal of Tribology, 2004, 126(3): 542-546. [8] LI Y, LEI G, SUN Y, et al. Effect of environmental pressure enhanced by a booster on the load capacity of the aerodynamic gas bearing of a turbo expander [J]. Tribology International, 2017, 105: 77-84. [9] KU C P R, HESHMAT H. Compliant foil bearing structural stiffness analysis: part I–theoretical model including strip and variable bump foil geometry [J]. Journal of Tribology, 1992, 114(2): 394-400. [10] LE LEZ S, ARGHIR M, FRENE J. A new bump-type foil bearing structure analytical model [J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(4): 1047-1057. [11] LE LEZ S, ARGHIR M, FRENE J. Static and dynamic characterization of a bump-type foil bearing structure [J]. Journal of Tribology, 2007, 129: 75-83. [12] LE LEZ S, ARGHIR M, FRENE J. Nonlinear numerical prediction of gas foil bearing stability and unbalanced response [J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(1): 012503. [13] PETROV E P, EWINS D J. Generic friction models for time-domain vibration analysis of bladed disks [J]. Journal of Turbomachinery, 2004, 126(4): 184-192. [14] OSMANSKI V S, LARSEN J S, SANTOS I F. A fully coupled air foil bearing model considering friction-theory & experiment [J]. Journal of Sound and Vibration, 2017, 400: 660-679. [15] ARGHIR M, BENCHEKROUN O. A simplified structural model of bump-type foil bearings based on contact mechanics including gaps and friction [J]. Tribology International, 2019, 134: 129-144. [16] ARGHIR M, BENCHEKROUN O. A new structural bump foil model with application from start-up to full operating conditions [J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(10): 101017. [17] MAHNER M, LI P, LEHN A, et al. Numerical and experimental investigations on preload effects in air foil journal bearings [J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(3): 032505. [18] MAHNER M, BAUER M, SCHWEIZER B. Numerical analyzes and experimental investigations on the fully-coupled thermo-elasto-gasdynamic behavior of air foil journal bearings [J]. Mechanical Systems and Signal Processing, 2020, 149: 107221. [19] LEE D H, KIM Y C, KIM K W. The dynamic performance analysis of foil journal bearings considering coulomb friction: rotating unbalance response [J]. Tribology Transactions, 2009, 52(2): 146-156. [20] LEE D H, KIM Y C, KIM K W. The effect of Coulomb friction on the static performance of foil journal bearings [J]. Tribology International, 2010, 43(5-6): 1065-1072. [21] FENG K, KANEKO S. Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model [J]. Journal of Tribology, 2010, 132(2): 021706. [22] FENG K, ZHAO X, HUO C, et al. Analysis of novel hybrid bump-metal mesh foil bearings [J]. Tribology International, 2016, 103: 529-539. [23] HOFFMANN R, MUNZ O, PRONOBIS T, et al. A valid method of gas foil bearing parameter estimation: a model anchored on experimental data [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mecha; nical Engineering Science, 2018, 232(24): 4510-4527. [24] HOFFMANN R, LIEBICH R. Experimental and numerical analysis of the dynamic behaviour of a foil bearing structure affected by metal shims [J]. Tribology International, 2017, 115: 378-388. [25] RUSCITTO D, MCCORMICK J, GRAY S. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine.1. Journal bearing performance[R/OL]. (1978-04-01)[2023-08-30]. https://doi.org/10.2172/7095892. [26] SAN ANDRES L, KIM T H. Improvements to the analysis of gas foil bearings: integration of top foil 1D and 2D structural models. [J]. American Society of Mechanical Engineers Digital Collection, 2007, 47942: 779-789. [27] LEE D H, KIM Y C, KIM K W. The static performance analysis of foil journal bearings considering three-dimensional shape of the foil structure [J]. Journal of Tribology, 2008, 130(3): 031102. [28] LEHN A, MAHNER M, SCHWEIZER B. Elasto-gasdynamic modeling of air foil thrust bearings with a two-dimensional shell model for top and bump foil [J]. Tribology International, 2016, 100: 48-59. |
No related articles found! |
|