胡晓敏, 王炳海, 黄佳玟, 龚超富, 李敏
Hu Xiao-min, Wang Bing-hai, Huang Jia-wen, Gong Chao-fu, Li Min
摘要: 现有基于代理模型的昂贵约束多目标优化算法存在两个问题,即使用回归模型拟合约束时带来的误差影响算法的搜索方向,以及目标函数存在不可拟合的情况时,回归模型拟合效果差。为解决这两个问题,提出一种分类模型与回归模型协同的昂贵约束多目标进化优化算法。该方法使用分类模型对搜索空间进行粗略划分,指导算法快速进入可行区域,减弱约束拟合误差的影响。使用回归模型在可行区域内优化目标函数。两种模型协同工作,分类模型提供概括的搜索方向,回归模型进行精细建模。这种模型的融合,既考虑了约束误差对算法的影响,也综合了目标函数的可拟合性问题,能更全面准确地描绘复杂问题的特征,从而提高算法的求解效率和效果,为进一步提升基于代理模型的昂贵约束多目标优化提供了一种协同建模的有效途径。
中图分类号:
[1] JIN Y. A comprehensive survey of fitness approximation in evolutionary computation[J]. Soft Computing, 2005, 9(1): 3-12. [2] JIN Y. Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2): 61-70. [3] BOX G E P, DRAPER N R. Empirical model- building and response surfaces[M]. New York: John Wiley & Sons, 1987. [4] BROOMHEAD D S, LOWE D. Radial basis functions, multi-variable functional interpolation and adaptive networks[J]. Royal Signals and Radar Establishment Malvern, 1988: 1-34. [5] KRIGE D G. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139. [6] ZURADA J. Introduction to artificial neural systems[M]. St. Paul: West Publishing Co. , 1992. [7] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297. [8] LIM D, JIN Y, ONG Y S, et al. Generalizing surrogate-assisted evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2009, 14(3): 329-355. [9] KNOWLES J. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66. [10] ZHANG Q, LIU W, TSANG E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2009, 14(3): 456-474. [11] SEAH C W, ONG Y S, TSANG I W, et al. Pareto rank learning in multi-objective evolutionary algorithms[C]//2012 IEEE Congress on Evolutionary Computation. Brisbane, QLD: IEEE, 2012: 1-8. [12] CHUGH T, JIN Y, MIETTINEN K, et al. A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142. [13] 蔡昕烨, 马中雨, 张峰, 等. 基于自适应分解的多任务协作型昂贵多目标优化算法[J]. 计算机学报, 2021, 44(9): 1934-1948. CAI X Y, MA Z Y, ZHANG F, et al. Adaptive multitask with multipopulation-based cooperative search for expensive multiobjective optimization problems[J]. Chinese Journal of Computers, 2021, 44(9): 1934-1948. [14] JIANG P, CHENG Y, YI J, et al. An efficient constrained global optimization algorithm with a clustering-assisted multiobjective infill criterion using Gaussian process regression for expensive problems[J]. Information Sciences, 2021, 569: 728-745. [15] 陈璟华, 邱明晋, 唐俊杰, 等. 基于改进差分进化和粒子群混合算法的电力系统最优潮流计算[J]. 广东工业大学学报, 2017, 34(5): 22-28. CHEN J H, QIU M J, TANG J J, et al. A hybrid algorithm based on improved differential evolution and particle swarm optimization for power system optimal power flow calculation[J]. Journal of Guangdong University of Technology, 2017, 34(5): 22-28 [16] GU Q, WANG Q, LI X, et al. A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems[J]. Knowledge-Based Systems, 2021, 223: 107049. [17] WANG H, JIN Y. A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimi-zation of trauma systems[J]. IEEE Transactions on Cybernetics, 2020, 50(2): 536-549. [18] CHUGH T, SINDHYA K, MIETTINEN K, et al. On constraint handling in surrogate-assisted evolutionary many-objective optimization[C]//Parallel Problem Solving from Nature-PPSN XIV: 14th International Conference. Edinburgh, UK: Springer International Publishing, 2016: 214-224. [19] YANG Q, CHEN W N, DENG J D, et al. A level-based learning swarm optimizer for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 578-594. [20] 胡晓敏, 龙祖涛, 李敏. 基于用户分层的多目标推荐算法[J]. 广东工业大学学报, 2023, 40(1): 10-18. HU X M, LONG Z T, LI M. A multi-objective recommendation algorithm based on user stratification[J]. Journal of Guangdong University of Technology, 2023, 40(1): 10-18. [21] CHENG R, JIN Y, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. [22] CHENG R, JIN Y, NARUKAWA K, et al. A multiobjective evolutionary algorithm using gaussian process-based inverse modeling[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 838-856. [23] WEI F F, CHEN W N, YANG Q, et al. A classifier-assisted level-based learning swarm optimizer for expensive optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 219-233. [24] MA Z, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986. [25] COELLO C A C, CORTéS N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6: 163-190. [26] DATTA R, REGIS R G. A surrogate-assisted evolution strategy for constrained multi-objective optimization[J]. Expert Systems with Applications, 2016, 57: 270-284. [27] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: a matlab platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. |
[1] | 唐超兰, 谢义. 6061铝合金铣削工艺参数多目标优化[J]. 广东工业大学学报, 2020, 37(05): 87-93. |
[2] | 胡德卿, 熊锐, 吴坚, 谢火志, 潘浩坤. 基于滚流比的某汽油发动机进气道优化设计和研究[J]. 广东工业大学学报, 2019, 36(01): 87-92. |
[3] | 周怡璐, 王振友, 李叶紫, 李锋. MOEA/D聚合函数的二次泛化及其优化性能分析[J]. 广东工业大学学报, 2018, 35(04): 37-44. |
[4] | 唐俊杰, 陈璟华, 邱明晋. 基于动态模糊混沌粒子群算法的含电动汽车微电网多目标优化调度研究[J]. 广东工业大学学报, 2018, 35(03): 100-106. |
[5] | 黄美华, 温洁嫦, 何勇. 求解多目标背包问题的改进人工鱼群算法[J]. 广东工业大学学报, 2016, 33(05): 44-48. |
[6] | 高鹰, 余琦, 刘外喜. 应用云模型和Favour排序的多目标优化算法[J]. 广东工业大学学报, 2014, 31(3): 14-20. |
[7] | 许欢, 温洁嫦. 差分进化算法在物流配送路径优化中的应用[J]. 广东工业大学学报, 2013, 30(4): 61-64. |
[8] | 谢桂芩,杨玉华,涂井先. 带有时间窗的虚拟场站接驳补货车辆路径问题[J]. 广东工业大学学报, 2013, 30(1): 61-67. |
[9] | 谢桂芩, 涂井先. 分区域多目标进化算法在协同车辆路径问题中的应用[J]. 广东工业大学学报, 2011, 28(4): 38-44. |
[10] | 张金凤 , 陈蔚丽. 多目标进化算法在物流配送中心选址中的应用[J]. 广东工业大学学报, 2010, 27(4): 76-80. |
[11] | 刘玉兰;. 下层带扰动参数的二层多目标优化问题的灵敏度分析[J]. 广东工业大学学报, 2009, 26(2): 11-. |
|