广东工业大学学报

• • 上一篇    

基于PSI技术的福州市地面形变监测与影响因素分析

周佩佩1, 吴希文1, 王华2, 杜哲远3   

  1. 1. 广东工业大学 土木与交通工程学院, 广东 广州 510006;
    2. 华南农业大学 资源环境学院, 广东 广州 510642;
    3. 新南威尔士大学 土木与环境工程学院, 新南威尔士州 悉尼 NSW 2052
  • 收稿日期:2024-05-11 出版日期:2024-10-08 发布日期:2024-11-22
  • 通信作者: 吴希文(1983–),男,教授,博士生导师,主要研究方向为InSAR与地表形变监测,E-mail:hayman.ng@gdut.edu.cn E-mail:zhoupeipei2022@163.com;hayman.ng@gdut.edu.cn
  • 作者简介:周佩佩(2001–),女,硕士研究生,主要研究方向为InSAR与地表形变监测,E-mail:zhoupeipei2022@163.com
  • 基金资助:
    国家自然科学基金资助面上项目(42274016) ;广东省自然科学基金资助项目(2021A1515011483) ;广东省科技计划项目(2021B1212100004)

Ground Deformation Monitoring and Influencing Factors Analysis in Fuzhou City Based on PSI Technology

Zhou Pei-pei1, Ng Alex Hay-Man1, Wang Hua2, Du Zhe-yuan3   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
    3. School of Civil and Environmental Engineering, University of New South Wales (UNSW) , Sydney, NSW 2052, Australia
  • Received:2024-05-11 Online:2024-10-08 Published:2024-11-22

摘要: 使用永久散射体干涉测量(Persistent Scatterer Interferometric,PSI) 技术对福州市2018年1月至2023年6月的66景Sentinel-1A数据进行处理和分析,以获取地面形变监测结果,并通过交叉验证确保结果的精度。研究得到福州市整体形变速率在–44 ~18 mm/yr之间,存在5个沉降较为明显的区域,其中4个靠近地铁线路,最大沉降位于长乐区峡漳路与福北路交界处。该地区的沉降是自然因素与人为因素共同作用的结果。从自然因素来看,沉降主要发生在第四纪沉积物地区;而人为因素则主要包括地铁建设、房屋建造与拆除等建设活动,以及仓库作业中货物装卸导致的地面荷载变化。该研究结果可以为福州市的城市规划建设和沉降灾害预防管理提供参考依据。

关键词: 沉降, 永久散射体干涉测量, 地铁, 归因分析, 福州

Abstract: In this research, 66 Sentinel-1 images spanning from January 2018 to June 2023 were analyzed using Persistent Scatterer Interferometric (PSI) technology to map ground deformation in Fuzhou City. The accuracy of the results was demonstrated by cross-validation. The study reveals that the overall deformation rate in Fuzhou City ranges from –44~18 mm/yr, with five distinct regions experiencing significant ground subsidence. Among these, four regions are located near subway lines, and the maximum subsidence occurs at the intersection of Xiazhang Road and Fubei Road in Changle District. The occurrence of subsidence in Fuzhou is the consequence of a complex interplay between natural and anthropogenic factors. In terms of natural factors, the subsidence is primarily distributed in areas with Quaternary sediments. The anthropogenic factors primarily include construction activities such as subway construction, building construction and demolition, as well as changes in ground loading due to warehouse operations such as cargo loading and unloading. The study results can provide a reference basis for urban construction and prevention management of subsidence disasters in Fuzhou.

Key words: subsidence, PSI, subway, attribution analysis, Fuzhou

中图分类号: 

  • TU196
[1] ORHAN O, OLIVER-CABRERA T, WDOWINSKI S, et al. Land subsidence and its relations with sinkhole activity in Karap?nar region, Turkey: a multi-sensor InSAR time series study[J]. Sensors, 2021, 21(3): 774.
[2] WU P C, WEI M, D’HONDT S. Subsidence in coastal cities throughout the world observed by InSAR[J]. Geophysical Research Letters, 2022, 49(7): e2022GL098477.
[3] NAVARRO-HERNáNDEZ M I, VALDES-ABELLAN J, TOMáS R, et al. Analysing the impact of land subsidence on the flooding risk: evaluation through InSAR and modelling[J]. Water Resources Management, 2023, 37(11): 4363-4383.
[4] 池永翔. 福州温泉区地面沉降特点及影响因素分析[J]. 水文地质工程地质, 2009, 36(6): 131-133.
CHI Y X. Analysis of influence factors for land subsidence in Fuzhou[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 131-133.
[5] 范锡朋, 黄文森. 城市热水开采引起的环境问题及防治——以福州市为例[J]. 地理学报, 1995, 50(1): 13-14.
FAN X P, HUANG W S. Urban environmental problems caused by the exploitation of geothermal water──a case study of Fuzhou[J]. Acta Geographica Sinica, 1995, 50(1): 13-14.
[6] 樊秀峰, 吴振祥, 简文彬. 福州市温泉区地面沉降分析[J]. 地质灾害与环境保护, 2004, 15(2): 89-92.
FAN X F, WU Z X, JIAN W B. Analysis of the ground subsidence in the hot spring area, Fuzhou[J]. Journal of Geological Hazards and Environment Preservation, 2004, 15(2): 89-92.
[7] 樊秀峰, 吴振祥, 简文彬, 等. 福州温泉区地下热水有限元数值模拟研究[J]. 福州大学学报: 自然科学版, 2005, 33(2): 226-229.
FAN X F, WU Z X, JIAN W B, et al. Finite element numerical simulation of the geothermal water system in the hot spring area in Fuzhou[J]. Journal of Fuzhou University (Natural Science Edition) , 2005, 33(2): 226-229.
[8] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on geoscience and remote sensing, 2001, 39(1): 8-20.
[9] TOMáS R, ROMERO R, MULAS J, et al. Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain[J]. Environmental earth sciences, 2014, 71(1): 163-181.
[10] 兰恒星, 孟云闪, 仉义星. 复杂因素影响下的福州市地面沉降时空演化分析[J]. 工程地质学报, 2019, 27(6): 1350-1361.
LAN H X, MENG Y S, ZHANG Y X. Spatiotemporal evolution analysis of land subsidence in Fuzhou city under the influence of complex factors[J]. Journal of Engineering Geology, 2019, 27(6): 1350-1361.
[11] HU B, YANG B, ZHANG X, et al. Time-series displacement of land subsidence in Fuzhou downtown, monitored by SBAS-InSAR Technique[J]. Journal of Sensors, 2019, 2019(1): 3162652.
[12] HUANG H, XUE D, ZHUO G, et al. Monitoring land subsidence in Fuzhou city (China) using the SBAS-InSAR method with Sentinel-1 imagery data[C]//2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR) . Xiamen: IEEE, 2019: 1-5.
[13] 郑文潘, 张双成, 王余沛, 等. SBAS-InSAR 解译福州市地表沉降时空变化研究[J]. 测绘科学, 2022, 47(3): 103-109.
ZHENG W P, ZHANG S C, WANG Y P, et al. Spatiotemporal variation of surface subsidence in Fuzhou interpreted by SBAS-InSAR[J]. Science of Surveying and Mapping, 2022, 47(3): 103-109.
[14] ZHU Y Y, HE Y, LI H Y, et al. Land Subsidence Monitoring and analysis in Fuzhou based on InSAR and multispectral remote sensing technology[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 2022, 43: 373-379.
[15] RABUS B, EINEDER M, ROTH A, et al. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(4): 241-262.
[16] NG A H M. Advanced satellite radar interferometry for ground surface displacement detection[D]. Sydney: The University of New South Wales, 2010.
[17] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
[18] KAMPES B M. Radar interferometry[M]. Dordrecht, The Netherlands: Springer, 2006: 211.
[19] ROSEN P A, GURROLA E, SACCO G F, et al. The InSAR scientific computing environment[C]//EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. Nuremberg: VDE, 2012: 730-733.
[20] KAMPES B M, HANSSEN R F. Ambiguity resolution for permanent scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2446-2453.
[21] NG A H M, GE L, LI X, et al. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry[J]. Journal of Geodesy, 2012, 86(6): 375-392.
[22] COSTANTINI M, ROSEN P A. A generalized phase unwrapping approach for sparse data[C]//IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99. Hamburg: IEEE, 1999, 1: 267-269.
[23] FERNáNDEZ-TORRES E A, CABRAL-CANO E, NOVELO-CASANOVA D A, et al. Risk assessment of land subsidence and associated faulting in Mexico City using InSAR[J]. Natural Hazards, 2022, 112(1): 37-55.
[24] 张路. 福建东南沿海盆地第四纪构造运动模式与动力学成因[D]. 北京: 中国地震局地质研究所, 2008.
[25] XU X, ZHAO D, MA C, et al. Monitoring subsidence deformation of Suzhou subway using InSAR timeseries analysis[J]. IEEE Access, 2020, 9: 3400-3416.
[26] CAO Q, ZHANG Y, YANG L, et al. Unveiling the driving factors of urban land subsidence in Beijing, China[J]. Science of the Total Environment, 2024, 916: 170134.
[27] LIU Z, NG A H M, WANG H, et al. Land subsidence modeling and assessment in the West Pearl River Delta from combined InSAR time series, land use and geological data[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103228.
[28] SUN H, PENG H, ZENG M, et al. Land subsidence in a coastal city based on SBAS-InSAR monitoring: a case study of Zhuhai, China[J]. Remote Sensing, 2023, 15(9): 2424.
[29] HE Y, NG A H M, Wang H, et al. Understanding the spatiotemporal characteristics of land subsidence and rebound in the Lianjiang plain using time-series InSAR with dual-track sentinel-1 data[J]. Remote Sensing, 2023, 15(13): 3236.
[30] HUANG Z, YU F. InSAR-derived surface deformation of Chaoshan Plain, China: exploring the role of human activities in the evolution of coastal landscapes[J]. Geomorphology, 2023, 426: 108606.
[31] JULONG D. The GRA in cause-effect space of resources[J]. Journal of Grey System, 2009, 21(2): 113-118.
[32] 胡波, 陈邦鑫. 基于 InSAR 技术的地表形变监测与影响因素分析[J]. 广东工业大学学报, 2023, 40(1): 83-91.
HU B, CHEN B X. Surface deformation monitoring and influencing factor analysis based on InSAR technology[J]. Journal of Guangdong University of Technology, 2023, 40(1): 83-91.
[1] 胡波, 陈邦鑫. 基于InSAR技术的地表形变监测与影响因素分析[J]. 广东工业大学学报, 2023, 40(01): 83-91.
[2] 陈佳炜, 吴希文, 王华, 陈炳杰. 基于双极化时序InSAR技术的地表形变监测[J]. 广东工业大学学报, 2022, 39(03): 77-82.
[3] 戴宜韦, 吴希文, 闵新颖, 王华, 朱焕廉, 彭林才. 利用时间序列InSAR技术对珠江三角洲主要城市进行地面变形监测研究[J]. 广东工业大学学报, 2019, 36(04): 92-98.
[4] 陶浩文, 张孝春, 罗路娜, 冯锦华, 吴震岳. 空气幕特征参数对挡烟效果的影响研究——以广州某地铁为例[J]. 广东工业大学学报, 2018, 35(04): 61-67.
[5] 吴海翔, 王华, 黄秀汝, Carolina Pagli, 杨泽鑫. 利用过采样方法提高矿区沉降干涉图的相干性[J]. 广东工业大学学报, 2015, 32(3): 123-126.
[6] 杨洪镅1,2. 强夯法在湿陷性黄土地基中的应用[J]. 广东工业大学学报, 2012, 29(1): 15-18.
[7] 黄辉, 李冬梅, 阮彩群, 何娜, 任毅, 刘春柳. 高分子絮凝剂对水厂排泥水的调质效果与絮凝形态学特性[J]. 广东工业大学学报, 2011, 28(2): 12-16.
[8] 黄骏;. 浅析地铁站域公共空间的集约化发展[J]. 广东工业大学学报, 2007, 24(4): 109-112.
[9] 罗志强; . 公路路桥(涵)过渡段结构设计技术分析[J]. 广东工业大学学报, 2007, 24(2): 64-68.
[10] 谭世霖; 罗志强; . 软基路基沉降系数的影响因素分析[J]. 广东工业大学学报, 2007, 24(1): 66-69.
[11] 罗志强; . 软基硬壳层对路基工程的作用和利用分析[J]. 广东工业大学学报, 2006, 23(2): 132-137.
[12] 林淦; 罗志强; . 高等级公路路桥过渡段结构的设计与施工研究[J]. 广东工业大学学报, 2003, 20(1): 57-60.
[13] 谢勇利; 罗志强; . 桥头路堤沉降防治设计存在问题的研究[J]. 广东工业大学学报, 2002, 19(3): 60-64.
[14] 沈军; 刘勇健; . 人工神经网络在单桩沉降预测中的应用[J]. 广东工业大学学报, 1997, 14(1): 115-120.
[15] 罗志强. 饱和粘性土地基沉降与固结变量的计算分析[J]. 广东工业大学学报, 1996, 13(3): 100-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!