• • 下一篇
钟晓文1, 卫政涛1, 陈达朗1, 黄勇宏1, 王晓菲1,2, 林绪亮1,2,3
Zhong Xiao-wen1, Wei Zheng-tao1, Chen Da-lang1, Huang Yong-hong1, Wang Xiao-fei1,2, Lin Xu-liang1,2,3
摘要: 电解水制氢具有良好的应用前景,但其阳极析氧反应(Oxygen Evolution Reaction, OER)由于四电子耦合转移机制而具有更大的能垒和更缓慢的动力学,成为电解水的限速反应。因此,研发高效、稳定的OER电催化剂已成为当前电解水产业的迫切需求。本文通过水热自组装和高温炭化热解制备了硫掺杂木质素衍生碳包覆非贵金属铁镍催化剂(FeNi@SC)。FeNi@SC在碱性介质中表现出卓越的OER活性和长期稳定性。在电流密度为10 mA·cm–2时具有216 mV的低过电位,远低于商业贵金属催化剂Ru/C (320 mV) ,并具有长达100 h的优异稳定性。实验结果表明,FeNi双金属协同作用以及S对碳载体的缺陷掺杂,优化了中间体的吸附过程,促进了OER性能。此外,由于木质素骨架与金属离子之间的强配位作用,制备得到的碳包覆层有效地防止了FeNi金属在反应过程中的浸出和团聚。该研究为开发具有高活性和稳定性的OER电催化剂提供了一种有前景的方法,同时也为木质素的高值化利用提供了思路。
中图分类号:
[1] YU C, HUANG H W, ZHOU S, et al. An electrocatalyst with anti-oxidized capability for overall water splitting[J]. Nano Research, 2018, 11(6): 3411-3418. [2] GIORIA E, LI S, MAZHEIKA A, et al. CuNi nanoalloys with tunable composition and oxygen defects for the enhancement of the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2023, 62(26): e202217888. [3] WANG J, XU F, JIN H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials, 2017, 29(14): 1605838. [4] LIN X L, LIU J L, QIU X Q, et al. Ru-FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting[J]. Angewandte Chemie International Edition, 2023, 62(33): e202306333. [5] YAN Y, XIA B Y, ZHAO B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A, 2016, 4(45): 17587-17603. [6] CHEN D L, LIU J L, QIU X Q, et al. Lignin-assisted alloying engineering of CoNiRu trimetallic nano-catalyst for effective overall water splitting[J]. AICHE Journal, 2024, 70(3): e18323. [7] WANG X M, MA W G, DING C M, et al. Amorphous multi-elements electrocatalysts with tunable bifunctionality toward overall water splitting[J]. ACS Catalysis, 2018, 8(11): 9926-9935. [8] XU Y, KRAFT M, XU R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting[J]. Chemical Society Reviews, 2016, 45(11): 3039-3052. [9] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. [10] WU Z P, LU X F, ZANG S Q, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Advanced Functional Materials, 2020, 30(15): 1910274. [11] WU H, WANG Z C, LI Z X, et al. Medium-entropy metal selenides nanoparticles with optimized electronic structure as high-performance bifunctional electrocatalysts for overall water splitting[J]. Advanced Energy Materials, 2023, 13(28): 2300837. [12] ZHANG W Q, LIU H X, YING J, et al. Preparation of nickel-iron sulfide/oxide nanocomposites by biomineralization of sulfate-reducing bacterium for efficient oxygen evolution[J]. Chemical Engineering Journal, 2023, 475: 146211. [13] ZANG Z H, GUO Q J, LI X, et al. Construction of a S and Fe co-regulated metal Ni electrocatalyst for efficient alkaline overall water splitting[J]. Journal of Materials Chemistry A, 2023, 11(9): 4661-4671. [14] WANG C H, YANG H C, ZHANG Y J, et al. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity[J]. Angewandte Chemie International Edition, 2019, 58(18): 6099-6103. [15] HUANG Y, JIANG L W, SHI B Y, et al. Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron-nickel selenide nanosheets[J]. Advanced Science, 2021, 8(18): 2101775. [16] WANG J, GAO Y, YOU T L, et al. Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting[J]. Journal of Power Sources, 2018, 401: 312-321. [17] WANG H X, YANG N, LI W, et al. Understanding the roles of nitrogen configurations in hydrogen evolution: trace atomic cobalt boosts the activity of planar nitrogen-doped graphene[J]. ACS Energy Letters, 2018, 3(6): 1345-1352. [18] LU X Y, YIM W L, SURYANTO B H R, et al. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes[J]. Journal of the American Chemical Society, 2015, 137(8): 2901-2907. [19] HUANG S C, MENG Y Y, HE S M, et al. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: efficient bifunctional electrocatalysts for overall water splitting[J]. Advanced Functional Materials, 2017, 27(17): 1606585. [20] POVEDA-GIRALDO J A, SOLARTE-TORO J C, CARDONA ALZATE C A. The potential use of lignin as a platform product in biorefineries: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110688. [21] LIN X L, WANG P, HONG R T, et al. Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation[J]. Advanced Functional Materials, 2022, 32(51): 2209262. [22] LIN X L, LIU J L, WU L J, et al. In situ coupling of lignin-derived carbon-encapsulated CoFe-CoxN heterojunction for oxygen evolution reaction[J]. AICHE Journal, 2022, 68(10): e17785. [23] YAO M Z, BI X Y, WANG Z H, et al. Recent advances in lignin-based carbon materials and their applications: a review[J]. International Journal of Biological Macromolecules, 2022, 223: 980-1014. [24] LIN X L, XUE L J, LIU B W, et al. Lignosulfonate-assisted in situ synthesis of Co9S8-Ni3S2 heterojunctions encapsulated by S/N co-doped biochar for efficient water oxidation[J]. Journal of Colloid and Interface Science, 2023, 644: 295-303. [25] 王晓菲, 薛李静, 周海潮, 等. 木质素磺酸钠衍生S/N共掺杂电催化剂结构调控与OER性能研究[J]. 广东工业大学学报, 2023, 40(6): 95-105. WANG X F, XUE L J, ZHOU H C, et al. Structure engineering of lignosulfonate-derived S/N co-doped catalyst for electrocatalytic OER performance[J]. Journal of Guangdong University of Technology, 2023, 40(6): 95-105. [26] LI P, WANG H L, FAN W J, et al. Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices[J]. Chemical Engineering Journal, 2021, 421: 129704. [27] HUA Y T, ZHENG L, SHUO L B, et al. Experimental study on preparation of bio-oil by hydrothermal liquefaction of three kinds of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1084-1095. [28] LI S, CHENG C, THOMAS A. Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts[J]. Advanced Materials, 2017, 29(8): 1602547. [29] ZHANG Y L, CHEN L, YAN B, et al. Regeneration of textile sludge into Cu8S5 decorated N, S self-doped interconnected porous carbon as an advanced bifunctional electrocatalyst for overall water splitting[J]. Chemical Engineering Journal, 2023, 451: 138497. [30] WANG M W, SU K M, ZHANG M L, et al. Advanced trifunctional electrocatalysis with Cu-, N-, S-doped defect-rich porous carbon for rechargeable Zn-air batteries and self-driven water splitting[J]. Acs Sustainable Chemistry & Engineering, 2021, 9(39): 13324-13336. [31] ZHAO J J, LIU Y M, QUAN X, et al. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping[J]. Electrochimica Acta, 2016, 204: 169-175. [32] YU J H, CHENG G Z, LUO W. Ternary nickel-iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting[J]. Journal of Materials Chemistry A, 2017, 5(30): 15838-15844. [33] LIU J L, WU L J, CHEN D L, et al. Regulation engineering of lignin-derived N-doped carbon-supported FeNi alloy particles towards efficient electrocatalytic oxygen evolution[J]. Chemical Engineering Science, 2024, 285: 119596. [34] LIU C C, JIA D B, HAO Q Y, et al. P-doped iron-nickel sulfide nanosheet arrays for highly efficient overall water splitting[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27667-27676. [35] XU W, ZHANG J P, TANG X Q, et al. Highly efficient sulfur-doped Ni3Fe electrocatalysts for overall water splitting: rapid synthesis, mechanism and driven by sustainable energy[J]. Journal of Colloid And Interface Science, 2024, 653: 1423-1431. [36] DING X Y, LI W W, KUANG H P, et al. An Fe stabilized metallic phase of NiS2 for the highly efficient oxygen evolution reaction[J]. Nanoscale, 2019, 11(48): 23217-23225. [37] ZHU Y, YANG H D, LAN K, et al. Optimization of iron-doped Ni3S2 nanosheets by disorder engineering for oxygen evolution reaction[J]. Nanoscale, 2019, 11(5): 2355-2365. [38] LIN J H, WANG P C, WANG H H, et al. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting[J]. Advanced Science, 2019, 6(14): 1900246. [39] REN G, HAO Q Y, MAO J, et al. Ultrafast fabrication of nickel sulfide film on Ni foam for efficient overall water splitting[J]. Nanoscale, 2018, 10(36): 17347-17353. [40] HAO C Y, WU Y, AN Y J, et al. Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst[J]. Materials Today Energy, 2019, 12: 453-462. [41] HU Q, LIU X F, ZHU B, et al. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting[J]. Nano Energy, 2018, 50: 212-219. [42] HE X B, ZHAO X R, YIN F X, et al. NiS-FeS/N, S co-doped carbon hybrid: synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction[J]. International Journal of Energy Research, 2020, 44(8): 7057-7067. [43] ZHU G X, XIE X L, LIU Y J, et al. Fe3O4@NiSx/rGO composites with amounts of heterointerfaces and enhanced electrocatalytic properties for oxygen evolution[J]. Applied Surface Science, 2018, 442: 256-263. [44] ZHANG Y L, WEI S Q, XING P X, et al. Iron-doped nickel sulfide nanoparticles grown on N-doped reduced graphene oxide as efficient electrocatalysts for oxygen evolution reaction[J]. Journal of Electroanalytical Chemistry, 2023, 936: 117323. [45] QIN C L, FAN A X, REN D H, et al. Amorphous NiMS (M: Co, Fe or Mn) holey nanosheets derived from crystal phase transition for enhanced oxygen evolution in water splitting[J]. Electrochimica Acta, 2019, 323: 134756. [46] HONG Y R, MHIN S, KIM K M, et al. Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control[J]. Journal of Materials Chemistry A, 2019, 7(8): 3592-3602. [47] ZHENG Y J, ZHANG L, HUANG H L, et al. ZIF-67-derived Co, Ni and S co-doped N-enriched porous carbon polyhedron as an efficient electrocatalyst for oxygen evolution reaction (OER) [J]. International Journal of Hydrogen Energy, 2019, 44(50): 27465-27471. [48] HU C J, HU Y F, FAN C H, et al. Surface-enhanced raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation[J]. Angewandte Chemie International Edition, 2021, 60(36): 19774-19778. |
[1] | 王晓菲, 薛李静, 周海潮, 林绪亮, 邱学青. 木质素磺酸钠衍生S/N共掺杂电催化剂结构调控与OER性能研究[J]. 广东工业大学学报, 2023, 40(06): 95-105. |
[2] | 罗朝兵, 李海潮, 游婷婷, 许凤. 木质素低共熔溶剂分离、功能材料制备及应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 1-13. |
[3] | 马明国, 袁琪. 基于木质素的多功能材料应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 14-20,62. |
[4] | 郝艳平, 罗通, 吕高金, 王超, 周昊, 杨桂花, 陈嘉川. 木质素基可降解复合膜材料的研究进展[J]. 广东工业大学学报, 2022, 39(01): 21-33. |
[5] | 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134. |
[6] | 郭鹏; 陈敏; 陈中豪; . 高效降解木质素优势混合菌的诱变选育研究[J]. 广东工业大学学报, 1997, 14(4): 34-39. |
|