广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (2): 80-83.

• 综合研究 • 上一篇    下一篇

基于模拟退火遗传算法的PID参数整定与优化

  

  1. 广东工业大学自动化学院,广东广州510006
  • 出版日期:2010-06-25 发布日期:2010-06-25
  • 作者简介:李凌宇(1982-),男,硕士研究生,主要研究方向为楼宇智能化

Optimizing and Adjusting the Parameter of PID Based on Simulated Annealing Genetic Algorithms

  1. 1.Faculty of Automation,Guangdong University of Technology,Guangzhou 510075,China
  • Online:2010-06-25 Published:2010-06-25

摘要: 结合模拟退火算法和遗传算法的思想,提出模拟退火遗传算法,用此算法进行PID参数整定与优化.同时使用自适应交叉率、变异率以及适应度拉伸方法对传统遗传算法进行改进.模拟退火遗传算法有效抑制早熟,且具有收敛性快、全局寻优与局部寻优能力.仿真结果表明,基于此算法寻优设计的PID控制器动态品质和稳定性更好、鲁棒性更强.

关键词: 模拟退火遗传算法;在线PID;参数整定;MATLAB仿真

Abstract: An improved genetic algorithm(GA)-Simulated Annealing Genetic Algorithms-is proposed by combining the thoughts of Simulated Annealing Algorithms and Genetic Algorithms to solve the problem of the parameter optimization of PID controller.The new GA has been improvemed in algorithm by the use of adaptive crossover,mutation operators,and scaling or stretching.This algorithm avoids premature convergence,and has a quick convergence performance.Besides,it has both the capability of optimization in the global area as well as in the local area.The simulation results shows that the PID controller designed upon the improved GA is of good dynamic quality and stability.

Key words: simulated annealing genetic algorithms;on-line PID controller;parameter optimum;MATLAB simulation

[1]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002.

[2]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.

[3]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004.

[4]陈金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2207.

[5]周洪波.一种改进的遗传算法及其在PID控制中的应用[J].控制工程,2007,14(6):589-592.

[6]陈祥光.遗传算法在PID控制器参数寻优中的应用研究[J].计算机仿真,2001,18(02):85-88.

[7]黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防大学出版社,2001.

[8]曾河华.时滞对象的自抗扰PID控制[J].清华大学学报,2007,47(11):10-15.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!