广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (3): 77-82.

• 综合研究 • 上一篇    下一篇

一类具有时变时滞的中立型微分系统的稳定性分析

  

  1. 天津大学 管理学院,天津 300072
  • 出版日期:2010-10-06 发布日期:2010-10-06
  • 作者简介:谢淑芳(1981-),女,硕士研究生,主要研究方向为系统工程

An Analysis of the Stability of Timelag Neutral Delay Differential Systems

  1. Faculty of Management, Tianjin University, Tianjin 300072, China
  • Online:2010-10-06 Published:2010-10-06

摘要: 研究了一类具有时变时滞的中立型微分系统,着重考虑了这个微分系统的渐近稳定性,基于Lyapunov方法,结合线性矩阵不等式(LMI),提出了一个关于t 、σ和h(t)的时滞稳定性标准,并提供两个数值例子以表明这个方法的有效性.

关键词: 中立型系统;时滞;渐近稳定;Lyapunov方法;线性矩阵不等式(LMI)

Abstract: Time-lag neutral delay differential systems are researched. The research focuses on the Asymptotic stability of the differential systems, based on Lyapunov method and linear matrix inequality (LMI). The timelag stability criteria for,and t,σ h(t) are put forward, and two numerical examples are provided to show the effectiveness of this approach.

Key words: neutral systems; delay; asymptotic stability; Lyapunov method; LMI

[1] Gopalsamy K,Liu P,Leung I.Global Hopfbifuration in a neural netet[J].Applied Mathematics and Computation,1998,94(2/3):171-192.

[2] El-Morshedy H A,Gopalsamy K.Nonoscillation,oscillation and convergence of a class of neutral equations[J].Nonliner Analysis,2000,40(1-8):173-183.

[3] Agarwal R P,Grace S R.Asymptotic stability of certain neutral differential equations[J].Mathematical and Computer Modelling,2000,31(8-9):9-15.

[4] Park J H.Delaydependent criterion for asymptotic stability of neutral equation[J].Applied Mathematics Letters,2004,17:1203-1206.

[5] Park J H,Kwon O M.Stablity analysis of certain nonlinear differential equation[J].Chaos Solitons & Fractals,2008,37(2):450-453.

[6] Kwon O,Park J H. On improved delaydependent stability criterion of certain neutral differential equations[J]. Applied Mathematics and Computation,2008,199(1):385-391.

[7] Hale J, Verduyn Lunel S M. Introduction to Functional Differential Equations[M]. New York: Springer-Verlag,1993.

[8] Boyd S, Ghaoui L E,Feron E,et al. Linear matrix inequalities in systems and control theory[M]. Philadelphia:Studies in Applied Mathematics, 1994.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!